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- Improving Mathematics Instructio

by Robert Dixon
Douglas Carnine
University of Oregon

The articles in this issue deal with student
achievement in mathematics: what is it, how did it
get that way, and how can it be improved? The
approach is based on Theory of Instruction (Engelmann
and Carnine, 1982), particularly the analysis of qual-
ity samenesses. This analysis identified important
samenesses and explicitly teaches them to students.

The contribution of a sameness analysis to teach-
ing mathematics canbeillustrated in geometry, where
students learn equations, first for surface area and
later for volume of various figures. Students are
typically expected to learn seven formulas to calcu-
late the volume of seven three-dimensional figures:

Rectangular prism: 1-w-h=v
Wedge: 1/2-1'w-h=v

Triangular pyramid: 1/6-1'w -h=v
Cylinder: n- r**h=v

Rectangular pyramid: 1/3-1-w-h=v
Cone: 1/3'n- r**h=v

Sphere: 4/3 ' w-r*=v

These equations do not prompt higher-order
thinking about volume, just the need to memorize
formulas. The sameness analysis reduces the num-
ber of formulas students must learn from seven to
slight variations of a single formula—area of thebase
times the height (B x h)—which brings conceptual
coherence to exercises involving volume.
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For the regular figures—rectangular prism {box),
wedge, cylinder-the volume is the area of the base
times the height (B - h). For figures that come to a
point {(pyramid with a rectangular base, pyramid
with a triangular base, and a cone), the volume is not
the area of the base times the height, but rather the

area of the base times 1/ 3 of the height (B % ‘h ). The
sphere is a special case--the area of the base times 2/

3 of the height (B £ .h }—where the base is the area
of a circle that passes through the center of the
sphere, and the height is the diameter. Thesameness
analysis makes explicit the core concept that volume
equals base times height. This core concept is ob-
scured in math textbooks that present seven differ-
ent formulas.

One of the primary purposes of the articles in this
issue is to explore both the traditional mathematics
curriculum and an alternative, Connecting Math
Concepts (Engelmann and Carnine,1991), that is built
around important samenesses. Our contention is
that once educators recognize the central role played
by curricular material, they must demand empiri-
cally validated approaches that take into account not
only the design of the curriculum, but the way the
content is to be communicated and is to be imple-
mented by teachers. Inaddition, these aspects (cur-
riculum design, instructional delivery, and imple-
mentation) can and must be seen as being responsive
to a full spectrum of students. In other words, -
teaching importdnt samenesses can foster higher-
order thinking in at-risk and learning-disabled stu-
dents. However, designing curricular materials to
accommodate lower-performing students does not
have to “hold back” above-average students. The
evaluation of Connecting Math Concepts indicates that
higher performers are able to transfer what they've
learned to solve very sophisticated problems. (The
evaluation findings are summarized in thearticle by
Carnine and Engelmann in'this issue.) '

Before examining math curricular material in more
detail, it is important to understand the most current
impetus for reforming mathematics education—the
standards published by the National Council of
Teachers of Mathematics (1989). Later in this introduc-
tory article, two aspects of these NCTM Standards
will be discussed—the research base for the Stan-
dards and the historical context for the Standards.
As is the case for most every educational reform,
mathematics reform is hindered by insufficient data
and a tendency to forget earlier reform efforts. The
point of thisissue is that earlier reforms failed, as the
present one might, because of too little attention to
pedagogy (e.g., the sameness analysis), the instruc-
tional delivery system, and implementation.

Overview of Remaining Articles

The next article in this issue, Reforming the Math-
ematics Curriculum, briefly describes some of the re- -
search on student performance in mathematics and
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on how mathematics instruction is conducted. The
article then compares traditional basals and Con-
necting Math Concepts according to a series of criteria
identified by Dixon (1990} in his review of the math
and concept teaching research.

The article, Making Connections in Third Grade
Mathematics: Connecting Math Concepts, looks more
closely at how Connecting Math Concepts teaches im-
portant samenesses at a single grade level, across a
variety of topics. The article, Teaching Problem Solv-
ing in Mathematics, examines how a single topic, word
problems, can be taught across several grade levels.

The next article, The Mathematics Curriculum—
Standards, Textbooks, and Pedagogy: A Case Study of
Fifth Grade Division, analyzes the instruction in two
math basals. The article also compares the versions
of the basals that appeared prior to the publication of
the NCTM Standards with the versions of the basals
that were released after the Standards. This com-
parison indicates that the basic pedagogy of math
textbooks has been largely untouched by the fervor
over reform.

The last article, Manipulatives—The Effective Way,
goes beyond the typical research that compares the
use and nonuse of manipulatives. Rather, it investi-
gates when to use manipulatives in the context of
teaching regrouping. The results have implications
for activities such as regrouping that come after a
basic understanding of the relationship between
manipulatives and numbers; it is more efficient to
introduce the concepts and procedures first, and
then present manipulativeactivities. Studentunder-
standing is as great as if manipulatives are intro-
duced first, but far less instructional time is required.

This concludes the overview of the articles in this
lssue., The remainder of this article discusses the role
of research and a historical perspective on reforming,
the mathematics curriculum.

The Role of Research in Mathematics Reform

The NCTM (1989) states three reasons for adopt-
ing and publishing the Standards:
1. “...to ensure that the public is protected from
shoddy products.”
2. “...asameans for expressing expectationsabout
goals.”
3. “...to lead a group toward some new desired
goals” {p- 2.
~ OF these reasons, the first appears to apply most
directly to research on mathematics education. With
respect to that reason, NCTM asserts within the
Standards: “It seems reasonable that anyone devel-
sping products for use in mathematics classrooms
should document how the materials are related to
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- current conceptions of what content is important to

teach and should present evidence about their effec-
tiveness” (p. 2). The Standards compare evidence of
the effectiveness of mathematics programs with the
kinds of evidence used by the Food and Drug Ad-
ministration. to establish minimum quality crltena
for the distribution of drugs.

Given the NCTM's clearly stated desire for re-
search-based Standards for effective mathematics in-
struction, the research base for the Standards appeared
to us to be an excellent starting point for a review of
mathematics research. However, we found the spe-
cific identification of the research base for the Stan-
dards to be illusive. In our attempts to identify that
researchbase, weencountered areportby the NCTM's
Research Advisory Committee (RAC) published prior
to the publication of the Standards themselves (1988).
Regarding this question of a research base for the
Standards, the RAC report states: : :

The Standards document contains many recommenda- -
tions, but in general it does not provide a research context
for the recommendations, even when such a context is
available (p. 339).

and

Although there is no reason to expect a solid research base
for every suggestion made in the document, the draft ver-
sion did not distinguish those recommendations that were
well-grounded empirically or theoretically from those that
were based more on the informed judgment or personal
opinions of the authors or that were drawn from examples
and experience available in other countries {p. 339),

These quotations speak for themselves: Some of
the recommendations in the prepublication draft of
the Standards were apparently based upon empirical
or theoretical research, but that draft did not specify
which. Such a rather vague reference to research
does not seem commensurate with the goal of pro-
viding “evidence of effectiveness.”

The RAC report (1988} anticipated that “The final
version of the Standards document may clarify the
basis for its recommendations more clearly, but it is
likely that even more will need to be done” (p. 339).
The final document, however, did not clarify the
basis foritsrecommendationsmore clearly as pointed
out by Bishop {1990) in his Harvard Educational Re-
view article:

..itisalittle surprising that there is not much reference
to the research literature concerning mathematics learning
and teaching. There is no impression of the existence of a
substantial body of research on which, for example, the
proposals in Standards are based. Recommendations and
exhortations appear to be supported only by opinion—

" authoritative opinion, it is granted—but opinion nonethe-
less (p.3686).

f iz



The Goals of Mathematics Education -
.. Two of the three reasons given by the NCTM for
establishing the Siandards relate to. mathematics
education goals. While authoritative opinion does
not provide the same kind of support for curricular
standards as research does (Bishop, 1990); the au-
thoritative opinion of mathematics educators is the
principal basis for establishing goals of mathematics
education. . o o ‘
The goals-outlined in Standards forall students are

that: ., . E -
~.1: : They learn to value mathematics. .

.- 2.:They become confident in their ability to do
- . -mathematics. - :

:

.- :.3.. Theybecome mathematical problemsolvers.
. 4. Theylearn to communicate mathematically.
- .5, They learn to reason mathematically.

Although the NCTM characterizes theselaudable,
butbroad goals as “new,” thereis some evidence that
they bear more than a slight similarity to broad goals
of math education in the past. A brief review of
mathematics education goals within this century
helps frame the articles in this issue.

Rappaport (1976) identifies three “...distinct and
significant periods...” in math education between
1900 and 1975. He characterizes the first, from 1900
to 1935, as the period of traditional mathematics,
characterized by the “mainaim” to “...teach children
the skills that would enable them to solve problems
of everyday life” (p. 566).

Rappaport identifies thesecond period, 1935-1958,

...as the period of meaningful arithmetic. The new aim

.. was to have children understand the arithmetic concepts
and the rationale behind the computational skills. There

" was an emphasis on the nature of the decimal mumeration
system as a place value system, Other numeration systems
were presented ns examples of place value systems. The

. emphasis was on arithmetic as a related system. Problem

. solving was emphasized at all levels. [emphasis added.]
(p. 566).

- The content of the elementary school mathematics
program during both periods described above, ac-
cording to Rappaport, was basically the same. “The
change was in the psychology of teaching and of
learning rather than in the content.”

Rappaport characterized the third period, from
1958 to the time of his writing as the era of new math,
with an emphasis on changes in the content of the
~ mathematics program, which he says school systems
adopted with “uncritical rapidity.” This change in
content, rather than pedagogy, was emphasized by
Macarow (1970): :

 Oneof the supposed strengths of the new math approach
has been in the stress of self- experimentation, self-discou-
ery and minimizing rofe memorization while emphasizing:

 the 'seeing’ of mathematical s1ruchires which lie'behiitd * -
these systems, Following these pedagogical criteria in ru
way is to be identified with new malhematics: new math-
ematics is not Io be interpreled as new and better waysof . .
teaching (p. 396).

* Although new math switched to an axiomatic
approach to mathematics, the broad goal of under-
standing remained from the earlier era of “meaning-
ful arithmetic.” Although the goal of the “meaning-
ful arithmetic” era was clearly meaning, proponents
of the new math charged that the goal hadn’t been
met. e :

A critical survey of mathematics textbooks compleled
during the last ten years has haroested a shoqking number
of useless definitions, downright errors, meaningless com-
plications of simple coricepts, emphasis leid on trivigl aspects
of a topic, and so ort..(Wren, 1968, p. 443). .

* Mathematicians defended the new math on the
basis that it gave students a better understanding
and appreciation of science and math (e.g., Wren,
1969), but criticslike journalist Richard Martin (1973)
responded, “There is one slight hitch: Many of these
kids can't add, subtract, multiply, or divide.” '

Criticisms like this led to the movement that came
to be called “back to basics.” That movement, in
turn, was criticized as a move away from under-
standing, as characterized in Offner’s (1978) state-
ment, “...the back-to-basics movement, which sub-
stitutes rote learning, ‘consumer math,’ and mind-
less pencil-pushing for understanding, is an educa-
tional crime” (p. 217}. '

Ironically, that criticism of back-to-basics is nearly
identical to the criticisms that lead to new math,
“The primary emphasis [of new math},” said Irving
Cowle (1974), “is on insight and comprehension, not
meaningless manipulation and reciting by rote. We
want thinking, reasoning, and understanding, rather
than mechanical responses to standard situations”
(p.71). _ , o

As Cooney (1988) has pointed out, the nature of
the recent Standards developed in response to a lack
of emphasis on understanding in the back-to-basics
movement. Until recently, some mathematics edu-
cators have seemed to envision “understanding”
and “adding, subtracting, etc.” as mutually exclu-
sive. Indeed, Rappaport concluded that only ap-
proximately 40% of students were capable of under-
standing mathematics. The math education for the
remaining 60%, he recommended, should be limited
tosimple, practical arithmetic computation. Atabout
the same time, however, Robert Davis (1974) sug-
gested a more moderate course in which both com- .
putationand understanding could be accommodated,
presumably for all students. “Today’s math pro-
gram should help children ‘figure out the pattern” of
a problem and then provide them with the skills to
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improving Mathematics Instruction—continued

solve it correctly. Is this too much to ask? We think

not” {p. 55).

From this discussion we see that:

Mathematics educators throughout the century

have emphasized the establishment of broad goals

within every period of mathematics education
development this century.

2 In each period, perhaps with the expectation of
back to basics, either problem-solving or under-
standing (or both) has been a central, highly em-
phasized goal of mathematics education.

3. Each new period of mathematics education has

. developed to some degree in response to the failure
to obtain broad goals in the immediate preceding
period. Having goals in each period never proved
to ensure gchieving goals.

4. Insome cases, a period of mathematics education
emphasized a major change in pedagogical ap-
proach (e.g., the discovery approach of meaningful
math, 1935-1958) while another emphasized a
major change in content (such as new math, with
its emphasis on axiomatics).

3. Untilrecently, “mathematics understanding” was
not necessarily a goal for all learners.

Inthe present series of articles we focus upon both
pedagogical practice and approaches to content that
appear to lead most reliably to the goals established
by the NCTM in the Standards, which reflect the in-
terest throughout most of this century on under-
standing and problem-solving. This focus is in
keeping with the ad vice of Hill, Rouse, Wesson (1979),
who asserted that “the responsible course [for
mathematics education] is to identify sound prin-
ciples of curriculum and instruction, whether they
have their roots in the new math, in traditional arith-
melic, or elsewhere.”

1
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Inaddition, we earnestly subscribe to the NCTM's
aspiration that these goals be achicved by all learn-
ers—a complete rejection of Rappaport’'s (1976)
suggestion that only 40% of students are capable of
understanding mathematics. ¢
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by Douglas Carnine,
University of Oregon

Educators are being caught between the rising
expectations of reform and the changing composi-
tion of public schools. The need for reform in math-
ematics education has been made clear by theNational
Assesment of Educational Progress. Of U.S. 8th
grade-age students, “only 16 percent of them have
mastered the content of a typical 8th grade math-
ematics textbook; that is, they can (65 to 80 percent of
the time) ‘compute with decimals, fractions, and per-
cents; recognize geometric figures; and solve simple equa-
tions.” The vast majority of them, more than 2,800,000
out of 3,500,000, cannot do these kinds of tasks suc-
cessfully at least 50 percent of the time” (Anrig &
LaPointe, 1989, p. 7).

Yet the new standards from the National Council
of Teachers of Mathematics (1989) don’teven address
the problemsidentified by the National Assessment,
but go on to more far-reaching goals:

To value mathematics.

To reason mathematically.

To communicate mathematics.

To solve problems.

To develop confidence.

These are challenging goals even for students who
historically have pursued math-related careers—
white males. Changing demographics make these
goals no less valuable, but far more difficult to reach.
According to a report by the National Research
Council, a private group that advised Congress on
scientific issues (New York Times, April 11, 1990):
“85% of new entrants into the work force are minori-
ties and women, but few minorities and women
enter engineering, science, and mathematics. Unless
changesoccur, the nation’sneeds for mathematically
skilled teachers, scientists, engineers, and hosts of
other workers for business, industry, and govern-
ment will not be met. By the year 2000, the need for
workersin these fieldsis expected torise by 36% over
the 1986 figure, the report said. Butat the sametime,
demographic trends indicate that the traditional pool
of scientistsand engineers—white males—will fall at
roughly the same rate. White males, presently the
source of most elite workers in the mass production
system, will constituteless than 1 0% of the netgrowth
of our work force between now and 2000.”

*Forthcoming in The fournal of Behavior Education. ®@1990 by Douglas
Carnine. All rights reserved

Additional impetus for reform comes from the
relatively poor standing of U.S. students in interna-
tional comparisons. Compared toJapanese students,
almost 95% of our students are below average (Inter-
national Association for the Evaluation of Educa-
tional Achievement, 1987).

In the United States, fraction instruction begins in
grade one and repeats annually amidst numerous
other mathematics objectives. In France, however,
fractions are introduced and taught in a single grade
(i.e., 7th grade). At the end of 7th grade, French
studentsare more proficientin fractions than students
in the United States (International Association for
the Evaluation of Educational Achievement, 1987).

A final study reported that American 13-year-olds
placed last in math and next-to-last in science when
compared with students in four other countries and
four Canadian provinces. Although U.S. students
were last in mathematics knowledge, 58% said they
were good at math. Conversely, although Korean
students ranked highest in math, only 23% of that
nation’s students reported that they were good at
math (LaPointe, Mead, & Phillips, 1989).

Problems in U. S. Mathematics Instruction

It seems the U.S. is well on its way to reaching the
fifth broad goal of the National Council of Teachers
of Mathematics-—to instill confidence. However,
developing competence will not be so easy, in part
because of the ways in which mathematics instruc-
tion occurs and the structure of the textbooks that
define the curriculum. The National Council of
Teachers of Mathematics (1989) noted the need to
change the “repetition of topics, approach, and Ievel
of presentation in grade after grade” (p. 66). This
comment is directed at the spiral curriculum, in
which each concept is revisited year after year. The
intent of the spiral curriculum is to add depth each
year, but the practical result is the rapid, superficial
coverage of a large number of topics each year.

According to Porter {1989), a relatively large per-
centage of the topics taught in mathematics receive
brief coverage. On the average, teachers devote less
than 30 minutes in instructional time across the en-
tire year to 70% of the topics they covered (e.g.,
telling time might receive 25 minutes duringall of 1st
grade). Teachers called this practice “teaching for
exposure” and seemed comfortable with its use.
Teaching for exposure has become commonplace in
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Reforming Mathematics Instruction—continued

our classrooms, largely due to the fact that the prac-
tice parallels the recommendations for topic cover-
age in mathematics textbooks, which are trying to
cover too many topics. Teachersareinabind—they
are expected to teach many, many topics, but most
things take a lot of time to teach well. Research on
two sequences for teaching “borrowing” (Evans and
Carnine, this issue) found that the first sequence
{manipulatives were introduced first followed by an
algorlthm) required an average of forty-one 10-
minute, teacher-directed sessions. The other sequence
(teaching the algorithm first, then rnampulatlves)
took far less time—thirty-four 10-minute sessions on
average. However, even if three sessions were
scheduled each day, 11 to 14 days would still be
required to teach borrowing with manipulatives and
an algorithm, far more time than is allocated in math
textbooks.

When individual differences are considered, the
unreasonableness of the basal programs’ expectations
is even more apparent. When manipulatives were
introduced first, some students required as much as
510minutesof instruction, about seventeen 30-minute
sessions.

Even 11 days of borrowing would be tedious for
students and teachers. Undoubtedly, that is why
basal math programs typically spend less than half
as much time on borrowing. The trade-off is that
many students will not have had enough instruction
and practice to learn to borrow. When thesestudents
return to borrowing the next year in the spiral cur-
riculum, they will receive even less instruction,
leading to repeated failure and frustration. This
downward cycle has been exacerbated by the trend
to include more topics at each grade level, pushing
fractions'down into 1st grade or even kindergarten,
for example,

Redesigning Math Instruction: Strands

Thereis analternative. Rather than organizing an
entire lesson around a single topic, as is done in
traditional basal programs, lessons can be designed
around strands; each 5- to 10-minute segment ad-
dresses a different topic. There are several reasons
for organizing a curriculum around strands, utiliz-
ing shorter segments on various topics within each
lesson.

First, students are more easily engaged with a
vanety of toplcs For example, 30 minutes on bor-
rowing day in and day out would become quite
tedious. In contrast, a lesson consisting of 8 minutes
onborrowing followed by 6 on estimation, 3 on facts,
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and 15 on word problems will be more likely to keep
students engaged. Variety increases attentivenéss
and how much students learn. ‘Working 30 or 40
problems consisting of a mix of borrowing, estima-
tion, facts and word problems is reasonable; working
30 or 40 of just borrowing problems in a lesson is not.

Second, strands make the sequencing of compo-
nent concepts more manageable. A mathematics
curriculum contains many concepts. Arranging these
concepts in a scope and sequence such that they are
taught prior to their integration is possible only
when several of them can appear in one lesson. For
example before students are introduced to borrow-
ing, they learn to rewrite 37 as 20 + 17. This compo-
nent is better taught in three 7-minute segments,
spread over three days, rather than in a single 30-
minute lesson. [For research on teaching component
concepts before the more complex concepts, see
Carnine {1980a) and Kameenui and Carnine (1986).]

Third,lessonscomposed of several segmentsmake
cumulative introduction feasible. In cumulative in-
troduction, after a concept is introduced it is sys-

- tematically reviewed and integrated with other re-

lated concepts. Cumulative introduction, as an al-
ternative to the traditional spiral introduction, has
three important advantages: (a) As noted earlier,
components can be introduced early, (b) practice can
be provided onboth new and previously introduced
concepts until responses are accurate and rapid, and
(c) distributed practice on some concepts can occur
every day. For example, only one or two difficult
math facts would be introduced at one time. They
would appear several times in every lesson for sev-
eral consecutive lessons (massed practice). Once
students became proficient at recalling those facts,
the facts would be practiced less frequently in each
lesson (distributed practice). Distributed practice is
easy to schedule when each lesson is designed to
accommodate several segments from several strands.

Organizing a curriculum by strands, in which

several topics are covered in a lesson, is but one

aspectof traditional math basals that mustbe reformed
if the needs of a full spectrum of student abilities are
to be met. Other criteria for reform have to do with
the use of time, the rate at which new concepts are intro-
duced, the clarity and coherence of activities and expla-
nations, and the adequacy and appropriateness of practice

- and review.

One curriculum has been developed according to
these criteria, with the intent of accommodating a
wide range of student abilities—the mathematics
curriculum used by the Direction Instruction Model.




’I'h:s rnathemahcs basal, Connecting Math. Concepts
(Engelmann and Carnine, 1991), stands in stark con-
trast to all traditional basals. The uniqueness of the
curriculum is a major factor in the effectivenessof the
Direction Instruction Model.

In a major national study (Stebbms, 5t. Pxerre,
Proper, Anderson, & Cerva, 1977), economically
disadvantaged and handicapped students who par-
ticipatedin Direct Instructionin kindergarten through
third grade performed as well as their more
advantaged peers. Inthatstudy, the Direct Instruction
system was also compared with other educational
approaches (Gersten & Carnine, 1984). They ranged
from Piagetian-derived approaches to open class-
room models, psychodynamic approaches, and
several models based on discovery learning. The
testing in the schools and the data analyses were
carried out by an independent research group. The
third graders in over a dozen Direct Instruction
school districts scored at the 48th percentile on the
math section of the Metropolitan Achievement Test.
The mean percentile for all the other approaches
(except for that of the University of Kansas) was
below the 20th percentile. A confirmation of these
findings came from interviews with parents con-
ducted by the Huron Institute (Haney, 1977). Par-
ents of students in Direct Instruction felt their chil-
dren were getting a better education than did parents
of students in any other approach. Moreover, Di-
rection Instruction students’ scores were also high-
est on measures of self esteem, responsibility for
success in school, and responsibility for failure in

school.

Outof the thousands of DlI‘ECt Instructlon students
included in the study, 321 students were not eco-
nomically disadvantaged. These students scored
well above the third-grade level in mathematics
(Gersten & Carnine, 1984):

4.3 in problem solving (the 75th percenhle)

4.4 in concepts (the 68th percentile)

4.8 in computation (the 83rd percentile) .

In a related finding, Gersten, Becker, Heiry, &
White (1984) reported that while students entering
Direct Instruction with relatively low IQ}'s scored
lower on entry level mathematics tests than did-
students who entered with higher IQ)’s, both groups
gained at least one grade-equivalent unit per year.
(See Figure 1.) In addition, students who entered
Direct Instruction with an IQ of over 111 did not, as
a group, experience regression toward the mean,
which would be expected. In other words, students
entered kindergarten at different levels of under-
standing. At the end of third grade, student perfor-
mance still differed substantially for students of
differing ability. However, every ability group made
significant progress each year.

Individual studies dealing with multiplication,
division, fractions, ratios, proportions, and their as-
sociated word problems have also been conducted.
In thesestudies the treatmentsincluded active teach-
ing techniques but compared different curricula. All
studies, which are summarized in Table 1, included
low-performing students. In all studies, the effec-
tiveness of Direct Instruction tended tobe confirmed.

Figure 1. MAT Total Mathematics 1: Longitudinal Progress by IQ Block for Children in EK Sites (N=1.056)
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Reforming Mathematics Instruction—continued

Other Important Design Features

As mentioned earlier, one critical aspect of Con-
necting Math Concepts is the organization of lessons
around strands, not a single topic. The rest of this
articleillustrates the other aspects of Connecting Math
Concepts that set it apart from traditional basals.

Use of Time

The students who require more teaching in school
are usually the students who do not gethelpathome.
They need even more instruction in school. Where
will the time come from? The primary source of
additional instructional time is in the math period
itself. In Connecting Math Concepts, most of the pe-
riod is devoted to interactive teaching, rather than
the extensive, independent practice that occurs with
basals. Another tactic is to completely drop topics
that are intended to be “taught for exposure.” In
Connecting Math Concepts, the time saved by drop-
ping inappropriate topics is devoted to high priority
topics.

Even activities for topics that are a high priority
must be designed to be efficient. The time allocated
‘to math instruction must be used to maximize stu-
dentlearning. Efficiency concernsare greatestaround
the use of manipulatives, as noted in the earlier

research on borrowing {(Evans, 1990), Introducing
manipulatives before the algorithm required an av-
erage of 90 extra minutes for each student. The
inefficient use of manipulatives with a more ad-
vanced topicis illustrated in Figure 2. A paraphrase
of a basal’s suggestion for teaching two-digit divisor
problems is given.

As Baroody (1989) noted, “...instruction should
begin with experiences that are real to students...”
(p. 4). By the time two-digit divisor problems are
introduced, the concept of one-digit divisor problems
should be “real.” Thus, time-consuming manipula-
tiveactivities for two-digit divisor problems may not
necessary. For example, in problem A at the top of
the page, the time required for a classroom of stu-
dents to break 188 counters into unitsand then divide
them into 31 groups could be spent more efficiently.
Efficiency becomes even more important in review-
ingtherequirements for therest of the page—students
are to work nine more two-digit divisor problems
with manipulatives.

Although manipulatives are essential for estab-
lishing basic number concepts and counting, other
less time-consuming representations, such as pic-
tures, can be used to teach the conceptsof subtraction
(Kameenui, Carnine, Darch, & Stein, 1986), multipli-

Table 1. Established Research Base in Mathematics

Authors Topic

Results

Gleason, Carnine, &
Boriero (in press)

Moore & Carnine (1989)

students.

Kelly, Gersten, & Carnine

{1990} secondary students.

Kelly, Carnine, Gersten,

& Grossen (1986) secondary students.

Darch, Carnine, & Gersten
{1984)

Teaching multiplication and
division word problems to
middle-school students

Teaching ratio and propoftion
word problems to secondary

Teaching fraction concepts to

Teaching fractions to

Teaching multiplication and
division word problems to
middle-school students

Direct Instruction students, taught

by a teacher or computer, progressed
from a chance level to a 90% accuracy
level.

Direct Instruction students had higher
posttest scores than students receiving
active teaching with an enhanced
traditional curriculum.

Direct Instruction students made fewer
conceptual errors than students
receiving traditional instruction,

Direct Instruction students scored
higher on post and maintenance tests
than students receiving active teaching
with an enhanced traditional
curriculum.

Direct Instruction students scored
higher on post and maintenance tests
than students receiving enhanced
traditional curriculum and instruction.
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Figure 2, Fifth Grade Basal. Introduction to Division by 2-digit Division toget a1-digit Quotient:

Using the Pages To Teach Using Manipulatives

Refer students to Exampte A at the top of the page. Provide each group wrth a hundred- square base ten
biocks and unit squares. ‘ .

After they have modeled 188 as one hundred, 8 tens and 8 ones, students shoulcl recogmze that the
hundred cannot be divided into 31 groups. They will have to rename the hundred as tens to have.a total

of 18 tens.

Then encourage the students to recognize that 18 tens cannot be divided into 31 groups, but rather they
should rename the tens as ones for a total of 188 ones. They can then divide the ones into 31 groups..
with the same number of ones in each group. The ones that are left over constitute the remainder,

After'each group has demonstrated 188 + 31 with mampulatwes have them write the divisior example
-The students should then use their manipulatives to work the other nine problems on the page '

One-Digit Quotients
A. Work in a group and explaln your thinking as you proceed.

classrooms. So how much can they spend on each award? How much money will be left?

Use your place value materials to find 188 + 31. Show 1 hundred, 8 tens; 8 ones. Flename in orderto
divide 188 into 31 equai groups. Explain your method to other students.

Try: Work in a group. -Use place-value materials as you record your work..
a. 24[76 b.. 11[80 c. 30[e1 d. 153+21

Practice: Work in a group. Use place-value materials as YOU record your work.

The School Advisory Committee has $188 to spend on awards for each classroom. There are 31 .

1) 220178 (@ =25[76 - (3 15l6a ¢4 11[es . (5 22[177

cation (Carnine, 1980a), division (Kameenui et al.,  when a day isn’t long enough for lower-performing
1986), fractions (Kameenui, Carnine, Darch, & Stein,  students to learn.and apply the new concepts.:sub-
1986; Kelly, Carnine, Gersten, & Grossen, 1986), ra-  sumed by that day’s topic. This problem is illus-
tios (Moore & Carnine, 1989), and so forth. As trated inFigure 3, which describes the seven fraction
Resnick and Omanson (1987) noted, “perhaps any lessons found in a widely accepted third-grade math
discussion of quantities manipulated in written basal. R .

arithmetic, without any reference to the block ana- Note that each lesson represents a substantially

logue, could be just as successful in teaching the  new topic, at a'pace far too fast for even average
principles that underlie written [math] instruction”  students. Moreover, no topic within a lesson is
“(p. 90). In Connecting Math Concepts, manipulatives  related to any previously introduced topic. In some
-are used with all new operations, after pictorial rep-  lessons, such as 45, 46 and 47, the relationships
resentations. Thereason for beginning with pictorial ~ between the topics aren’t clear and are llkely to
representations is that time is saved and nothing is  confuse many students:

lost in conceptual understanding. Lesson 45—a fraction is related to one whole. stu—
dents represent a fraction by coloring a

Rate for Iniroducing New Concepts . .
portion of a region.

Because basal math texts typically devote an en-  Lesson 46—a fraction is related to a set. Given a set,
tire lesson to a single topic, they tend to introduce students write the fraction that repre-.
topics at a brisk rate—one a day. At times, this rate " sents a subset.
is too slow. Some topics do not deserve a full class  Lessoh 47—a fraction is related to a set. Given a
period. The other problem is more troublesome— fraction, students determine the subset.

Lesson 45 deals with a fraction as represented by
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Reforming Mathematics Instruction—continued

Figure 3. Rate of introduction of Fraction Topics in a Third Grade Basal

.. Thekey aspects of the first seven objectivesin a third-grade basal are listed below. This material is introduced
- over 12 pages of text.

Objective 45:
Objective 46:
Objective 47:

‘Objective 48:

Objective 49;

Objective 50:

Objective 51:

A fraction can be used to name a part of the whole. (Fold a rectangle into 2 equal parts, then
4. Determine how many different ways you can make the fold.} Color different parts—write
the fraction. :

A fraction can be used to name part of the set of pencils, markers, or crayons. (Number of red
pencils, etc., over number of pencils, ete.,inabox, e. g-.4red crayonsand 17 crayonsinall. The
fraction is 4/17.)

In 1/3, the 3 means 3 equal groups and the 1 means 1 of the groups. (Make 3 groups. Draw
3 flowers, put one in each group. Keep placing flowers in each group until you've placed a
total of 15 flowers.) ' '

To find 1/3 of 12 mentally, divide 12 by 3. (You have 12 apples. You're going to cook 1/3 of
them. How many apples will you cook? 12+3=4 1/30f12=_.) ‘

Point out that numerators can be compared if the denominators are alike. {Compare two
pizzas, each cutinto 6ths. Onehas5 piecesleft over versusthe other one with 3 piecesleftover.

Compare 5/6 and 3/6. 5/6 is greater than 3/6.)

Use place value to explain that fractions with 10 as a denominator can also be written as
decimals. Fraction,1/10. Decimal, 0.1 = one-tenth. (Using hundreds square and ten sticks.)

Show that just as cents can follow dollars, so tenths and hundredths can follow whole
numbers. (Using hundred square as the number 1, students write decimals, e.g. .001,2.72,

from pictures.)

a portion of a region, e.g., 3/4 is:

The concept of a fraction as a region is not related to
the concept of a fraction as a subset, the concept
covered in lessons 46 and 47. In lesson 46, students
work from a set such as:

COoOo

@oe

280

@ee

The students are to write the fraction
3
_ 4
What is the relationship between a fraction as a re-
gioninlesson 45 and this new conceptofa fractionin
lesson 467 The basal is silent on this issue. Inlesson
47, the student is given a fraction such as3/4 and told
to identify the subsel of a set of 12 members. The
progression of objectives for lessons 45 through 51
helps explain why most U.S. students can’t make
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much sense out of fractions.

Connecting Math Concepts devotes all third grade
instructionon fractionsto that representation of frac-
tions seen in lesson 45 of the basal, with one impor-
tant difference—an emphasis on depth of under-
standing. First, students learn that fractions can
represent values greater than one whole. The bottom
number tells how many parts to divide each whole
into;e.g., for 3/4 and for 7 /4, students would divide
the wholes in this fashion:

DD

The top number telis how many parts the students
haveinthe fraction; e.g., for the fraction3/4, students
shade three parts:

Students later learn whether fractions are less
than one (2/3, 1/4), equal to one (7/7, 3/3), or




greater than one (7/4, 4/3). The greater-than, less-
than concepts prepare students to relate fractions to
whole numbers on a number line, inexercisessuchas
this:

1 2
I ]
| !
o o
O L]
Students write the following fractions in the boxes:
2 4 6
2 2 .2
These exercises are important for students to un-
derstand that fractions and whole numbers are part
of the same number system. Later, exercises relate
mixed numbers and fractions:

3
|
1
H
L1

These exercises relate fractions and whole numbers
to measurement, showing, for example, that 2-1/3
inch is the same as 7/3 inches.

Finally, students learn the relationship between
fractions and division. Students learn to write 6/2

as:
206

which is illustrated on a vertical number line:

3 2 ° 2[6
2—:3 = ol
1::’% = 202
oL

Atthispoint, the interrelationships between whole

numbers, fractions and division are demonstrated.
The goal of Connecting Math Concepis is to thoroughly
teach the fundamental concept of a fraction and its
relationship to other math concepts. The basal text,
which teaches a different aspect of fractions every
lesson and doesn’t develop their interrelationships,
is more likely to lead to student frustration and
confusion.

Explanations and Activities

The explanations and activities in basal math text-

books usually have dual objectives—to develop con-
ceptual understandingand procedural mastery. Basal
textbooks typically rely on discovery; the students
are to discover important concepts. Discovery does
not work for many students who learn better from
clear, explicit explanations of what to do and why to
do it. The problems with discovery are most appar-
ent with complex concepts, such as dividing frac-
tions. A paraphrase of the introduction of d1v1dmg
fractions from a widely-accepted basal appears in
Figure 4 (suggestions to the teacher) and Figure 5
{the corresponding student page from the textboek).

Ironically, the goals of teaching for understanding
and for procedural mastery work against each other.
Many students are unlikely to discover the concept
through these activities and also end up confused
about the procedure itself. Moreover, the procedure
isdemonstrated inarote fashion;inexample 3 onthe
student page (Figure 5), why are thenumbers crossed
out and replaced by other numbers? Throughout the
basal program, students are shown this as a rote
procedure.

Figure 4, Basal Suggestions to the Teacher for
Dividing Fractions

Objective: Divide a fraction or a mixed number by a
fraction (first introduction of reciprocal).

Introduction: Using Manipulatives

Have students place their rulers on their desk. Rul-
ers should be marked in at least eighths of an inch.
When answering the following questions, have stu-
dents count on their rulers. Then have them multiply
by the reciprocal of the divisor.

a) How many 1/2 inches are there in 5 inches?
b) How many 3/8 inches are therein 4 5/8 inches?[15]
¢) How many 7/8 inches are there in25/8 inches?[ 3 |

Teach: Using the Pages

For Example 1, tell the students to find out how many
groups of 5/8 are in 5 5/8 inches.

For Example 2, tell students that what they are find-

ing out is how many groups of 3/8 there are in 3.

If the students use the ruler as a picture model, it will
be easier to write the equation.

For Example 3, point out that multiplication and
division are reciprocal operations, notmg the recip-
rocal relationship the students derived in this ex-
ample. :
For Example 4, discuss how using a ruler gives the
students a way to check their answer for reasonable-
ness.

RerorMing MaTtH CURRICULUM 11




Reforming Mathematics Instruction—cContinued

In Connecting Math Concepts, students build ontheir
understanding of fractions, particularly upon the
concept of fractions equal to one, suchas5/3, 7/7,0r
39/39. With this conceptual understanding, stu-
dents can comprehend the rationale for all the cross-
ing out, as in example 3 of Figure 5: '

45 x 8

o 8x5

By rewriting this expression as:
B x45
8 x.5

the fraction equal to-one; eight-over eight, is readily
recognized. Because students have also been taught
that any number times 1 equals the original number,
students see that the equation is the same as:
1x 45
5
which equals 45 over 5. Similarly, students in Can-
necting Math Concepts ‘will have the background to
see that Co
45=5x9

5 bx

—_

Figure 5. Student Basal Page for Dividing Fractions
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1. A strip of fabric pieces is shown below the ruler. Each piece of fabric on the strip is 5/8" long. To find the
number of 5/8-inch pieces there are in 5-5/8 inches of fabric, you can count each piece. To your partner,
explain how the equation55/8 + 5/8 =9. Remember, to find how many 5/8 arein 3 5/8, you must divide
55/8 by 5/8. The quotient is 9. : ' ‘

2. 'Again, work with your partner. This time, show how to find the number of 3/8 in 3. Use the rule above
and write the division equation using 3 and 3/8.

3. Study the following multiplication equations with your partner.

. L9001
55/8x8/5=45/8x8/5 = 45 xB=9=9
x5 1
1 1
1
3x8=3x8=-23x8=8=28
3 1 3 lx?i-l

How is 5/8 related ta 8/57 How is 8/3 related to 3/87

4, Discuss with your partner the multiplication problems above in Example 3 with the division problems in
Examples 1 and 2. State the general rule for dividing by a fraction. '

5. Work with your partner to figure out3 1/8 + 5/8 using the ruler. See the ruler. Do your answers agree?

1HI|II|I‘l! ||I| J!ll
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Again, 5 over 5-equals one, so :

3X2 = 1x9or0.

5x1
Students who understand fractions don’t cross out
numbers in a rote fashion. They learn the lawful,
reasonable nature of mathematics, in this case based
on the identity element for multiplication: Any
value multiplied by one, or a fraction equal to one,
yields the original value.

Basal math programs almost universally revert to
discovery for the introduction of difficult concepts.
The only exception is solving word problems, for
which almost nothing is offered, discovery or any-
thing else. The suggestions for introducing the
teaching of various types of word problems in a
widely-accepted fifth 5th grade basal follow:

Addition and subtraction. These word problems
are introduced very early in the program:

“Ask students if each problem describesa
joining situation, a removing situation or a
comparing situation.”

. On another early lesson, the teacher is to “ask
students if the answer will be greater or lesser than
the greatest number in the problem.”

Two pages later:

“Have students scan problems to deter-
mine which will require computatlon and
which ones require comparison.”

Eight pages later:

“For each problem, ask students to ex-
plain their choice of a computation me thod.”

Multiplication. Twenty-one pages later, on the
first lesson on which multiplication problems ap-
pear: '

“Have student read all problems before
actually solving any of them. Ask which
problems require finding an estimated prod-
uct.”

Division. Twenty-seven pages later, on the first
lesson on which division problems appear:

- “For each problem, ask students to ex-
plain their choice of a computational
method.”

Connecting Math Concepts devotes a great deal of
time to teaching students explicit strategies for solv-
ing word problems. Because of the complexity of

-teaching word problems, the strategies cannot be
described adequately in this article. However, de-
scriptions are available in the next wo articles. The

effectiveness of approaches such as these has been
found in research with mu]tlphcatlon and division

word problems (Darch, Carnine, & Gersten, 1984;
Gleason, Carnirie, & Boriero, in press), and-with ratio
word problems (Moore & Carnine, 1989)..

Guideéd and Independent Practice

As noted earlier, traditional basals offer rather
vague explanations for introducing new concepts.
After these initial explanations and activities, stu-
dents are expected to work several problems on their
own, without explicit guidance from the teacher. :

Many students need a transition between the ex-
planation givenin the introductionand the problems
to be worked independently. Good, Grouws, and
Ebmeier (1983) found that guided practiceisan effec-
tive way for teachers and students to interact. In
guided practice, which occurs after a concept is in-
troduced, the teacher asks questions that prompt
appropriate student application of the new concept:
In Connecting Math Concepts, guided practlce might
include these questions to guide students in com-
pleting their practice problems on borrowing. “Are
you going to start in the ones column or tens
column?...Read the problem in the ones column.

...Is the bigger number on top?...So do you need to
borrow?...How do you do that?...” These questions
are repeated for three or four problems, which re-
minds the students of where to start working, whether
to borrow, and how to borrow.

Guided practlce is the primary means by Wthh

" the teacher insures that the students can apply the

concepts they learn. During guided practice, teach-.
ers prompt the students, but as the students ap-
proach mastery, teachers should decrease thelevel of
prompting until the students are functioning inde-

pendently (Paine, Carnine, White, & Walters, 1982).

Practice should also continue after a concept is
introduced so that the students will remember how
to apply it when it is integrated in a more complex
concept. For example, in the basal program that best
teaches fractions, the skill of finding the least com-
mon multiple was introduced in one lesson, ne-
glected for the next seven lessons, reviewed in one
lesson, neglected again for six lessons, and then re-
appeared in the context of adding and subtracting
fractions with unlike denominators. This teaching
sequence amounted to two exposures over 15 les-
sons, which is not sufficient teaching or review for
even average-ability students.

In Connecting Math Concepts, the 1mp0rtant and
complex skill of least common multiple is practiced
on every lesson, before it is subsumed in adding and
subtracting fractions with unlike denominators.

Independent practice needs to encompass a suffi-
cient number of examples and span enough lessons

-s0 that a full spectrum of students will have ample

opportunity to become proficient. The inadequacy
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Reforming Mathematics Instruction—cContinued

of practice in the early grades is clearly illustrated
with instruction on basic facts. Figure 6 indicates
that students are expected to learn all their addition
facts with 10 lessons of practice, covering 411 prac-
tice examples, which is an average of about four tries
on each of the 100 facts. The situation is similar for
subtraction—9 lessons with 259 practice examples,
less than three tries on each of the 100 facts. More-
over, there are long sequences oflessons withlittleor
no review. Half the chapters have 20 or fewer addi-
tion practice problems. In more than half the chap-
ters, there are no subtraction practice problems.

In Connecting Math Concepts, all addition and sub-
traction facts are not introduced in second grade.
(Carrying and borrowing problems are made up of
only familiar, previously introduced facts.) Factsare
practiced every lesson throughout the program. There

are no gaps in practice as found in the basal de-
scribed in Figure 6.

Insufficient review can have disastrous conse-
quences. A principal of anelementary school wanted
to ensure that all students learned the multiplication
facts. He made learning multiplication facts the
focus of a school-wide effort in the fall—charts were
placed around the school; inter-room competitions
were conducted and so on. Within two months,
almost every student was proficient. But the multi-
plication facts were not reviewed in the winter and
spring. The following fall, the principal found very
little retention of the multiplication facts. He was
surprised and disappointed. With a few minutes of
review each day during the winter and spring, the
principal’s program would have been a success.

Figure 6. Addition and Subtraction Practice Problems in Typical Second Grade Math Textbook

Addition

5 &)
Chapters ,j? <

Mixed

Subtraction

1. Addition and 3
Subtraction to 12

Fact Families
Mixed Practice

2. -Place Value to 99 0

3, Addition Facts to 18 7

" 4. Subtraction 1
Facts to 18 {(miss

Fact Families
Story Problems

5. Time, Money, Msm't 2

Choosing Operation

6. Additon of 2-digit Numbers 8

Story Problems

" 7. Subtraction of 1
2-digit Numbers

Problem Solving
15-Sub., 2-Add.
Checking the Answers

8. Geometry, Fractions 1

9. Time, Money, Msm't 0

10. Place Value to 999 1

11. Adding & Subtracting 5

3-digit Numbers

Estimation,
More/Less
Problem Solving

12. Muttiplication & Division 1

Real Integrated
Practice
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Appropriate Examples -

The amount of practice and review is not the only
important aspect of examples. The quality of the
examplesisalso crucial. Hamannand Ashcraft(1986)
reviewed the presentation of basic math facts in
widelyused mathematics textbooks from kindergar-
ten through third grade and found ... the frequency
of occurrence distributions for the basic facts were
markedly skewed” (p.173). Inparticular, they found
that “there were many fewer presentations of large
than small problems in the texts, and problems in-
volving the addition of zero were relatively infre-
quent at all grades” (p. 173). -

Hamann and Ashcraft further noted a clear rela-
tionship between the observed distribution of prob-
lems and the ease with which problems were solved:
Facts with larger problems and with zero that ap-
peared least in texts were also the most difficultfacts,
as measured both by response time and error rates
for students from first grade through college. Stu-
dents need extra practice on more difficult content,
not easier content.

The quality of examples involves more than de-
ciding which ones to emphasize. Inappropriate ex-
amples must be avoided to prevent confusion in the
students {(Carnine, 1980b). For example, one basal
program suggested thatstudents multiply to find the
perimeter of asquare. While multiplication to deter-
mine the perimeter of a square is valid, students will
later learn to multiply to find the arez of rectangles;
some students will become confused and will multi-
ply to find the perimeter of rectangles that are not
squares. Using addition for perimeter and multipli-
cation for area is much safer for third graders.

Another example is the basal introduction of frac-
tions as parts of one whole—1 /3,2/3,3/3,1/4,2/4,
etc. The next year, students encounter mixed num-
bers with only “proper” fractions in the basal; thatis,
the fractions are still less than one part of a pie. Asa
result, students have had at least two years to be-
come convinced that a fraction always represents a
portion of a pie; all fractions are the same in that they
represent part of a whole. In the third year, students
typically encounter improper fractions. Thisisespe-
cially bewildering to low-performing students, who
predictably apply what they learned previously (that
a fraction is part of one pie). Asa result, the students
will likely draw this picture to represent 4 /3

As demonstrated earlier, fractions can be carefully
introduced so that students understand that frac-
tions can represent more than one whole.

Another case of inappropriate examples is sug-
gested by findings from the National Assessment of

Educational Progress (Carpenter, Coburn, Reyes, &
Wilson, 1976) . Many students apply an unintended
ruleabout denominators when adding fractions {i.c.,
do what the sign says). For example, students might
give 2/5 as the answer for1/3 +1/2. The fallacious
rule comes from students’ experiences with wholc
numbers and with multiplying fractions. With whole
numbers, students always act on the numbers; e.g., 3
+2 =5. Similarly, when students multiply 1/3 x 1/
2, the numerators and the denominators are multi-
plied. Students then apply the unintended rule—
“operate on the denominators”—to addition prob-
lems (1/3 + 1/2), and mistakenly add both the nu-
merators and the denominators to get 2/5.

Most basal programsunintentionally promote this
misrule. They teach adding and subtracting frac-
tions in one chapter and multiplying and dividing
fractions in a different chapter. The programs never
give integrated practice. Because of the lack of integra-
tion of addition and multiplication of fractions, stu-
dentsdo notreceive any explicit instruction or guided
practice in distinguishing fraction addition from
fraction multiplication. This misruleis an example
of how students’ understanding of whole number
concepts and operations interferes with their under-
standing of fractions (Behr, Wachsmuth, Post, &
Lesh, 1984).

Conclusion

Good, Grouws, and Ebmeier {(1983) noted that
“insufficient attention has been given to the quality
of development in our work and in educational re-
search generally” (p. 199). They view development
as a “collection of acts controlled by the teacher” {p.
207) that consists of five components: (a) attending
to prerequisites, (b) attending to relationships, o)
attending to representation, (d) attending to percep-
tions, and (e) attending to the generality of concepts.
In their research, Good and Grouws pointed out that
development “appears to be the only variable that
teachers, as a group, had consistent trouble in imple-
menting” (1979, p. 358). '

A close look at traditional basals suggests that
publishers are not meeting their responsibilities to
assist teachers in providing suitable development
for students. The content of mathematics is exten-
sive, often difficultand interrelated in complex ways.
If basal texts do not deal with these aspects of the
mathematics curriculum, how can teachers, who have
little “free time,” be expected tp systematically ad-
dress Good’s et al. (1983) five components? Improv-
ing mathematics performance will not be possible
without reforming the math textbooks that define
the curriculum. The data from the Direct Instruction
Model suggest that the following reforms will help
prevent many students from failing in math:
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Reforming Mathematics Instruction—continued

1. Organize lessons around strands, not a single .

topic.

2. Design lessons to maximize instructional time
so thatall studentshave an opportunity tolearn
and apply important concepts.

3. Introduce concepts at a reasonable rate.

‘4, Create explanations and activities that clearly
communicate new concepts, leading to both
understanding and proficiency.

5. Provide guided and independent practice.

6. Select appropriate examples.

Math curricular material designed with these
guidelines in mind will relieve much of the unfair
burden placed on teachers for development. Curricu-
lar material should provide field-tested suggestions
“for developing understanding and proficiency. Such
material will benefit both teachers and students. ¢
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Making Connections in Third Grade Mathematics:
Connecting Math Concepis

by Douglas Carnine
Siegfried Engelmann
University of Oregon

The greatest challenge in teaching mathematicsin
the intermediate grades is not developing computa-
tional proficiency, a necessary goal, but instilling an
integrated schema for mathematics. When students
can see the key relationships within mathematics,
they will be able to make important connections.
This paper illustrates this process with the third
grade level of Connecting Math Concepts (Engelmann
and Carnine, 1991).

Although Connecting Math Concepts is just being
printed, some evaluationshave been carried out, one
with two very good third-grade teachers with pre-
dominately low-income, minority students. The
mean achievement was 5.6 grade level, far above the
expected score of these students at the end of third
grade. (Ina third graderural school in another state,
the mean percentile in methematics for the 26 third
graders in Connecting Math Concepis was 79.

Another study compared four high-performing
third graders in Connecting Math Concepls with four
high performers in a conventional basal. One aspect
of the investigation had to do with solving types of
problems the children would not have encountered
in their textbook. For example:

104 fifth graders are taking two buses on a field trip.
Fourth graders can ga in theextra seats. The busleaving
from the north end of town holds 72, The bus leaving
from the south end of town has 14 fewer seats. Fifity-
five Fifth graders will get on the bus at the north end of
town. How many fourth graders can take the bus at the
north end of town? Howmany fourth graders can take
the bus at the south end of town?

Allthird graders in Connecting Math Concepts solved
the problem; none of the students in the other pro-
gram did. Another aspect of that evaluation looked
at the degree to which the students were able to make
connections between various math concepts. (Some
ofthese connections areillustrated laterin thisarticle.)
Thethird gradersin Connecting Math Concepts saw 50%
more relationships among math concepts than the
comparison students. :

A final evaluation looked at how well the problem
solving strategies taught in Connecting Math Con-
cepts transfered to “real life” problems presented on
video. The Connecting Math Concepts students solved
about 80% of the real life problems, while the com-
parison group solved about 50%.

Addition and Subtraction Facts
Basic Facts as Families

Additon and subtraction facts are usually treated
as 200 discrete sets of three numbers to be memo-
rized. In Connecting Math Concepts, facts are treated
as interrelated concepts—members of number
families. This structure prompts important relation-
ships between addition and subtraction, as well as
reduces the number of sets to be memorized from 200
to 55. From these 55 number families, all 200 addi-
tion and subtraction facts can be quickly derived.
The 55 number families appear in Figure 1 (see page
18). .

Number families are written on an arrow so that

* they can be transformed into both addition and sub-

traction statements. For example, in the number
family £ ®p~15, 6 and 9 are treated as “small num-

bers” and 15 is is treated as a “big number.” Four
facts can be derived from this family. Each of two

" addition facts starts with one of the small numbers

and adds the other small number to produce the
“big” number: 6 + 9 =15 and ¢ + 6 = 15. The
subtraction facts begin with the big number and
subtract one of the small numbers, yielding the other
small number: 15-6 =9 and 15-9 = 6. Because 45
number families lead to two addition facts and two
subtraction facts, students who memorize 55 number
families know how to deduceall 200 facts: 45 famnilies
times 4 facts (2 addition and 2 subtraction) equals 180
facts. The ten families on the diagonal in Figure T
) (e.g., ———h"'ll ——E--4’ _B._B-bf,) )

yield 20 facts (e.g., 1 + 1=2; 2-1=1; 2+2=4;
4 -2 =2; ete.). Memorizing 55 families is easier and
less time consuming than memorizing 200 facts.
Teaching the fact number families also promotes the
integration of the concepts of addition and subtrac-
tion. .

The Counting Relationships Among Facts

More can be done to help studentslearn facts than
just reducing the memory load from 200 sets of
numbers to 55. Additional teaching of counting rela-
tionships between facts eases the learning ofthese 55
sets. For example, number families with a 1 are fairly
easy to learn, because the big number is the next
number, when counting in order. For example, 8 is
the big number after 7 when countingby 1: 1+7= 8.
Similarly, 9 is the big number after 8 when counting
by 1: 1+ 8 =9. The big numbers in the top row of
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Connections in Third Grade Math—continued

Figure 1. Addition and Subtraction Number Family Table

Figure 1 are simply the counting numnbers 2, 3, 4, 5,
6,7,8,9,10.

Facts with 2 as a small number are closely related
to facts with the number 1 as a small number. This
pattern is reflected in these corresponding addition

facts:
1+6=7 '
+1 ( ) +1
2+6=8

This relationship is repeated for every pair of fami-
lies. The increment from 1 to 2 equals the increment
from7to8(and from8to 9, from 9 to 10, and so forth):

1+7=8
+1( )+1
2+7=9

This relationship helps students learn to go from the
easier facts with a 1 to facts witha 2;if 1+ 6 = 7, then
2+6=8.

~ Another exampleof counting relationships among
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facts can be seen in the relationship between facts
with 10 as a small number and the difficult group of
facts that have 9 as a small number. Addition facts
that contain the number 10 as a small number are
easy to remember, because the digits in the answer
come from the digits in the added numbers. For
example, in the problem 3 + 10 =], the digits for the
answer appearin the added numbers 3 + 10=13. The
answer 13 is composed of one ten and three ones.
The simplicity of facts with a 10 can help students
with the more difficult group of facts, those with a 9.
Forexample, the family of 3, 10,13 in the last column
of Figure 1 has the corresponding family of 3,9, 12 in

the preceding column. The two correspond ing addi-

tion facts for these families are:
9 is one less than 10

f
3+09= 1!2

L
3+10=1|3

50 12 is one less than 13




This relationship applies to every pair of problems: -

9 iz one less than 10

|
4+9=[]

I
4+10=14
1

so[] is one less than 14

When students see any addition problems with a
9, suchas7 + 9, they can think of theeasy correspond-
ing fact (7 + 10 = 17) and come up with the answer to
7 + 9 =[], which is'one less than 17,

7+10=17 so 7+9=16]

For research on the relationship between counting
strategies and fact acquisition, see Carnineand Stein
(1981), Carpenter and Moser (1984), and Thornton
(1978).

Problem Solving

The most prevalent and frustrating math applica-
tion in primary- grade math programs is word
problems (Kameenui & Griffin, 1989). The frustra-
tion stems largely from an inability of mathematics
educators to devise explicit strategies that a full
spectrum of students can learn and successfully ap-
ply. A consequence of this frustration is the avoid-
ance of any but the most rudimentary type of addi-
tion and subtraction word problems in textbooks
{Peterson, Fennema, & Carpenter, 1988). PPeterson, et
al., recommend that students be prepared to handle
the variations of the four basic types of word prob-
lems: join, separate, compare,and part{part-whole(part/
part-whole refers to classification—cats and dogs
would be the partsand pets would be thewhole). The
following analysis illustrates explicit strategies that
students can successfully apply to this full range of
problems.

An explicit strategy should prepare students to
see the total structure of a problem and nof just rely
onspecifickey words. Forexample, the word “more”
appears in many joining problems calling for addi-
tion, e.g., “Juan had 7-marbles. He won5 more. How
many marbles does hehave now?” But the word also
appears in a significant number of comparison prob-
lems that call for subtraction: Jill had 614 dollars.
Tomhad 829 dollars. How muchmoremoney did Tom
have? Students who think the word more always
represents joining and calls for addition have a su-
perficial understanding of problem solving, at best.

The strategy illustrated next is aimed at teaching
students to see the relationship between thesituation
described in a story problem and the concept of a
number family composed of two small numbers
(e.g.,5+4) and a larger number (e.g., 9). Number
families are useful because they provide a map that
can be used to diagram the various types of word
problems. The number family map in turn leads to
setting up the addition or subtraction calculation.

‘The strategy teaches students not to make -quick

judgments because of the presence of a particular
word such as more.

The strategy has students workin two stages. The
students first graphically represent the situation
described in the word problem; second they deter-
mine how to write thenumber problem. Thestrategy
will be illustrated withjoining and separating problems,
then comparison problems, and finally part/part-whole
probiems.

joining and Separating Problems

In the word problem below about Marco, special-
needs students are likely to add 57 and 112, because
the problem says that Marco saved dollars. The
students assume that because of the word saved, they
should carry out the operation for joining by adding
the numbers thatare given. However, adding 57 and
112 does not lead to the correct answer.

Marco’s mother wilt give him some money for a school
trip. He already has saved 57 dollars. He needa 112
dollars. How much money will his mother give him?

To prevent this confusion, teachers explain how to
represent the joining situation described in the word
problem. This representation takes the form of a
diagram based on the number family analysis. In
joining problems, such as the one about Marco sav-
ing money, the numbers that are joined, or added,
are the first numbers. The total, in this case the
number of dollars Marco needs, is the big number.
As students have learned from working with num-

‘ber families, the two small numbers go on top of the

arrow and the big number, which is the sum in this
example, goes at the end of the arrow :

-Q-——Sla—uz,

After students represent the situation withanum-
ber family, they are ready to apply what they have
learned about the relationships between addition
and subtraction to compute theanswer. Forexample
when the unknown in a number family is a small
number, such as :

8 e 112

the number family can be translated into a subtrac-
tion problem. The big number, 112, is the first num-
ber in the subtraction problem. The small number
that is given, 57, is then subtracted from the big
number (112 — 57 = []) to produce the other small
number: 112 - 57 = 55.

In short, students learn first to represent the join-
ing situation described by the word problem and,
second, to decide how to compute the answer based
on the relationship between addition and subtrac-
tion. For example, if both small numbers are givenin
a problem, they are written above the arrow.
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Connections in Third Grade Math—cContinued

.32 3 EI
The students then add the small numbers to figure
out thé big number: '
- Lo 32
Cotnp arison Problems

“In’ comparlson problems the comparison can be
information given in a problem (e.g., Marco sold 57
fewer subscnphons than Lui) or the unknown asked
‘about in a problem (e.g., How much heavier was
Mary?) Because of the words “sold fewer” in the

following problem, many spec1a1-needs students will
subtract

Marco sold 57 fewer magazine subscriptions than Lui.
Marco sold 112 subscriptions. Howmany subscriptions
did Lui sell?

Again, students can use number families to keep
from getting confused. The first step is to represent
the problem using a number family; students must
identify the two numbers stated in the problem as
either both small numbers or a small number and the
b1g number. The students are shown asimple way to
do this: They find the sentence that tells about the
comparison and read it without the number that tells
‘how many more or how many less. For example,
students are taught to read the first sentence without
the 57: “Marco sold fewer subscriptions than Lui.”
Because Marco sold fewer subscriptions, Marco is
represented by asmall number.. By.default, Luiis the
big number. The students write M for Marco and L
for Lui: : ‘
Mg r _
The word problem also has a number that gives the
difference between Marco and Lui. That number is
- always a small number. Marco sold 57 fewer, so 57
is the other small number: -

L —--—-—-—-—b'-L )

“The students next read the rest of the problem.
“The problem asks about Lui and gives a number for
Marco, 50 the students draw a box around L and
cross out Marco and write 112:

112

57 M i

‘Because the problem states both small numbers,
the students write an addition problem:
57
+112

The answer tells how many magazine subscriptions
Luii sold.
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Part/part-Whole Problems

Part/part-whole problems, can be thought of as
classification problems. To work part/part-whole
problems, students need to understand the relation-
ships among the classes named in a problem. For
example, cats and dogs are members of the larger
class, pets; or as in the following problem, magazine
subscriptions and newspaper subscriptions are
members of the inclusive (“larger”) class, subscrip-
tions. As in the earlier examples, special-needs stu-
dents are likely to miss the problem by adding the
numbers, because of the verb “get.” ‘

Maria has to get 112 magazineand newspaper subscrip-
tions. She is sure she can get 57 magazine subscriptions.
How many newspaper subscriptions does she have to
get?

To represent this situation w1th a number family,
students treat subscriptions, the big class, as the big
number. The names for the subordinate classes goin
the places for the “small” numbers, on top of the
number family arrow: '

magazine . newspaper

- subscriptions
The students cross ot the words that have number
values and draw a box around the word the problem
asks about:
> 112
2 newspa Er
Iuagerité
The students know the big number, 112; so they
subtract: 112-57 =[]. The answer gives the number
for newspaper subscriptions.
Students work miany types of word problems be-
sides those requiring addition and subtraction of
whole numbers. For example:

Moultiplication and Division

a. There were 8 rooms. Each roomhad § tables, How many
tables were there in all?
b. Each dog had 5 bones. There were 45 bones in all. How

many dogs were there?

Estimation, Geometry, and Multiplication

For these problems, students use estimatation to
draw a proportional representation of the figure
described in the problem. Then they write the length
for each side. Then they write the multiplication
problem and the answer:

a. Afloor is the shape of a rectangle. Itis 10 fect long and
8 feet wide. What is the area of the fioor?

b. Alarge fizld is the shape of a rectangle. Itis 3 miles long
and 5 miles wide. What is the area of the field?




Coins and Cents

a. Tomhad nickels and dimes. Tom had 40 cents in nickels
and 7 dimes. How many cents did Tom have in all?

b. Alice had pennies and quarters. She had 20 cents in
penniesand70centsin all. How many cents did she have
in quarters?

Fractions with Like Denominators

8
a. A Kitten weighed 3 pounds. Then the Ktten gained
pounds. How many pounds was the kitten?

9 5
b. A bag of nails weighed 1 pounds. ' Somebody took 4
pounds of nails from the bag. How many pounds were

" leftin the bag? '

For research on teaching students explicit strate-
gies to solve word problems, see Darch, Carnine,and
Gersten (1984), Gleason, Carnine, and Boriero {in
press), and Moore and Carnine {(1989),

Problem solving is not restricted to word problems.
Somie other activites are shown below.

Z
3

Identifying Relevant Information

Read each problem to see what the person buys.
Add up only those amounts.

3/

$ .71

a. A person buys items 1 and 3.

How much does the person
spend? '

Evaluating Alternative Solutions

. /,/ Town B
-

/’,/ ]I
Town A~ ]
|
' @l }
} 1
Town D — ———Town C

Don and Dan went from town A to town D,
Don said, "The trip is less than 10 miles."
Dan said, "The trip is more than 10 miles.”
a. Which person went through town B?
b. How many miles did that person travel?

¢. Which person did not go through town B?

d. How many miles did that person travel?

Determining the Correct Operation

a 5+7-4J3 b ax5=18[_]3

Determining the Missing Value

a. 2+a+4=[_—_|+4 b. e+a+2g17~—|:]

Other Linkages

Teaching connections in mathematics is impor-
tant for not only problem solving; important link-
ages should be made among all major concepts.
Multiplication serves as an example of how these
linkages are made in Connecting Math Concepts (En-
gelmann and Carnine, 1991). The way in which the |
concept of multiplication is introduced and related
to other concepts is summarized in Figure 2.

Figure 2. Concepts Developed by Building from
the Familiar to the Unfamiliar

Multiplication

l

Area
Commutative & | } Word Problems
Principle for ~
Multiplication
Coordinate Column
Itiplicati
System Estimation Multiplication

Multiplication

At the top of Figure 2 is multiplication, which is
based on counting. For example, to introduce 3 x 2,
students create or are shown two rows of blocks,
each with three blocks.

T
T

The teacher says, “I can figure out how many blocks
by counting a fast way. Thereare 3 blocks in each
row, so I count by 3 for each row: 3, 6. Let's seeif the
fast way works. You count the blocks one at a time:
1,2,3,4,5, 6" Students then write multiplication
equations, such as 3 x 2 = 6. Later they work from '
pictures of columns or blocks and eventually work
symbolic problems without pictorial representations.

Area. Next, the rows of blocks are joined. Rather
than two separate rows of blocks , students see this
figure:

Students are told that they can use multiplication
to figure out how.many squares are in the figure.
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Connections in Third Grade Math—continued

Threesquaresineachrow and two rows,or3x 2. The
area of the figure is six square units.

Commutative Property for Multiplication. The
bridge to the commutative property for multiplica-
tion, which is important in teaching multiplication
facts, occurs in this way. Students are shown

2 and 3
3 2

and are told that the figures have the same area; the
second figure is just turned up on its end so the 2 is
on the bottom. The students write a statement for
each figure;.3x2 = 6and 2 x 3 = 6. Both figures have
the same number of squares and therefore the same
area. The figures illustrate that the answers for 3 x 2
and 2 x 3 are the s5ame. Subsequently, when students
learn the answer to 6 x 8, for example, they realize
they also know the answer for 8 x 6. These exercises
lead naturally to multiplication and division number
families. _

‘Students learn that there are number families for
multiplication and division analogous to those for
-addition and subtraction. This new number family
resembles a division problem. Just as is the case for
an addition and subtraction number family, a multi-
plication and division number family yields four
facts—two multiplication and two division. For the
family:

8 .
2| 16
the factsare: 2 x 8 = 16
Bx2=16
l6+2= B
16+8 = 2

- Coordinate System. The coordinate system pro-
vides reference numbers for any point on a 2-dimen-
sional grld When one corner of a rectangle is placed
at the origin of a 2-dimensional grid (0,0), the oppo-
site corner of the rectangle is represented by the

‘ coordinates for that point. For example, the corner of
a 4 x 6 rectangle has coordinates of x = 4 and y = 6,

O = M L A W m N O

L) 1 4 5 § 7
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Students are simply told that the coordinate system
gives a code for drawing rectangles. The students
start at a point called the origin. The code for how
wide to make a rectangle is the number given for the
letter x, The code for how high to make a rectangle
is the number given for thelettery. The students work
from values for x and y to identify the far corner of
therectangle. From that point, they draw the sides of

" the rectangle,and calculate its area. Later, students

are shown a point, and they write the xand y values.

Estimation. Estimation is often difficult for stu-
dents because they don’t have the frame of reference
for “guessing intelligently,” a prerequisite for check-
ing the reasonableness for their answers. Introduc-
ing estimation in the context of area provides a good
demonstration of how to guess intelligently. In the
introductory estimation exercises, students use a
ruler to draw a side of a rectangle (e.g., 4 inches
wide).. The students draw the next side (e.g. 5
inches} without the ruler. They use the 4-inchline as
a basis for estimating the length when drawing the 5-
inch side. The frame of reference for estimation
comes into play because the 5-inch side they make
without the ruler is slightly longer than the 4-inch
side. The students can visually check the reasonable-
ness of their answer. They can see if the rectangle
they drew is a little taller than it is wide. They then
multiply to calculate the area.

Another estimation activity provides both dimen-
sions for one rectangle, but just the dimensions fora
second rectangle:

4x6 3x7

The students use estimation to draw a second rect-
angle that is supposed to be 3 inches wide and 7
inches high. In this exercise, the basis for estimation
is the original rectangle. The new rectangle should -
be a little narrower, but a little higher, than the
originalrectangle. Againstudents canvisually check
the reasonableness of their answer. In both estima-
tion exercises, students are learning a new skill,
estimation, in the content of a familiar skill, area.

The estimation introduced with these rectangle
activities is extended in several ways. Asis typically
done, children estimate the answers to computation
problems. However, they also estimate amounts
from menus and catalogs and then compare their
estimates with exact calculations. ‘ ‘,/

Column Multiplication. Area can also be used 1}n

H

ﬁ




teaching column multiplication. Inintroductory ex-
ercises, students are shown how to calculate the total
area for two figures that both have the same width
(e.g., 4'x 10" and 4' x &').

'

10

6

4+
0l— 4 0 4

Students figure out the area for each rectangle by
constructing simple multiplication facts. They then
add to find the total area, 40 + 24 or 64.

10 6
x4 x4
40 24

Next column multiplication is introduced as a short
cut for figuring the area of any two rectangles witha
side the same length. The students write the width,
e.g., 4,just one time. Initially the heights for the two
rectangles—10 for the first and 6 for the second—are
written as an added number (10 + &)

{10+ 6)
x 4
24

+ 40

The students firstmultiply 4 x6, then4 x 10. Next, the
students are shown that the 10 + 6 can be written as
16; the problem, though, is still worked by multiply-
ing 4 x 6 and 4 x 10, then adding the products:

16
x 4
24
+ 40
64
At this point students are working column multipli-
cation problems.
Volume. An obvious extension of area is to vol-
ume. Multiplication takes into account a third di-
mension. (Figure 3.)

Figure 3.

« Volume is the number of cubes inside a confainer,

1 inch 1 Square inch 1 Cubic inch
A B o

Every box has helght, width, and depth.
» The depth is how far back il goes.

To find the volume of a box, you multiply height times width
times depth.

» The units [n the answer are cubic unils nol square unils.

..~ Wordproblems. A finalskill that can be integratéd

into students’ prior knowledge of area is the intro-
duction of multiplication and division word prob-
lems. The slightly more advanced problem types
that would appear after this introduction were illus-
trated earlier in the section on problem solving.

Multiplicationand division word problemscan be
introduced in exercises in which students work with
blocks or a coordinate system grid:

An early word problem might tell about squares on
a grid (or blocks). A typical problem follows:

A rectangle has two squaresin each row. There are cight
squares in oll. How many rows of squares does the
rectangle have? '

The students draw a line under two squares on the
bottomof the grid to show how wide the rectan gleis.
Next, they count the squares two at a time (2, 4, 6, 8),
marking a completed row each time they count, until
they reach 8. They then can see the number of rows,
4,

A Pl A e

L)l e

Students learn to solve word problems without a
grid or blocks next and then problems involving a
variety of objects and events, such as the problems
illustrated earlier with dogs and their bones and
tables in rooms. ’

Collecting and Analyzing Data

A major objective of the new National Council of
Teachers of Mathemtics standards is to teach stu-
dents to reason mathematically. Oneimportant way
to reason mathematically is to collect and analyze
data. An early step involves interpreting data in a
table, as exemplified in the questions for the table
below. (Figure4.) Next, students begin operating on
the data in a table by adding to determine the totals.
(Figure 5.) .

At the next stage, students learn to fill in blank
cells in a table, using the number family analysis.
(Figure 6.) For example, in the top row, a small
number and a big number are given, so the students
start with the big number and subtract: 11 -7 =[].
The number that goesin the blank cell in the top row
is 4. Students later solve for the numbers that go in
the other biank cells and answer questions based on
the complete data in the table. (Figure 7.)
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Connections in Third Grade Math-—continued

Figure 4.

Figure 7.

Rainfall During 3 Months

s
el
ar

s /S &
o L& o b
VA NA

0
I?Jy]S

a%w

River City 6 9 1 16

Hill Town 3 1 3] 12

Oak Grove D 7 9 16

Tolal for
all cities

a. Which month had the most rainfail?

=] 17 18

b. Which month had the Ieast rainfall?

c. Which city had the least amount of
rain?

d. How much rain fell in all the cities
during July?

This tabie shows the number of big
cars and small cars that parked in lot A
Big

and lot B. .
T b
& L /S E
5 3 AL
cars

Small

cars 6
Total

in lots 1 22

a. How many small cars parked in lot A?
b, How many big cars parked in the lots?

¢. How many big cars and small cas parked
in the lots?

d. How many big cars parked in lot B?

Figure 5. TheNumber of Cars That Went Down

Different Streets.

Aed cars 4 5 g
Yellow cars 2 2 8
Blue cars 4 4 1
Totals

Figure 6.

Writa the problems for each row and the answer.
Then write the missing numbers in the table. Add
the totals for the rows to figure out the total total
and check it by adding the totals for the columns.

c‘séa
a
7 11
8 3
2 7
tolals
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In later lessons, students are given data that they
insert in a table. Then they solve for the blank cells
and answer questions based on the table. (Figure 8.)
Later, the students collect their own data and ana-
Iyze it to answer questions they generate.

The data analysis is extended to tables involving
time, in which students work with departure times,
duration and arrival times. (Figure 9.) Again, stu-
dents insert data into the table, solve for blank cells
and answer questions based on the table.

Figure 8.

o

k! x Fact A: |n Mountain Park, there are 18

E . S 2 wn .

2z | 8| I rocks in all,

=a | »n = Fact B: [n Mountain Park, there are 10
Smail small rocks.
rocks Fact C; The total number of racks in the
Large both parks are 35.
rocks Fact D: In Valley Park, there are 5§ large
Al racks.
1oeks

a. Were there more large rocks in Mountain Park or Valley Park?

b. How many large rocks were there in both parks?
¢. Were there more large rocks or small rocks?
d. Were there more rocks in Mountain Park or Valley Park?

A new analysis is introduced for data with multi-
plicativerelationships. (Figure 10.) Given the cost of
five ounces, students determine the cost of oneounce,
which involves the concept of unit pricing.




Figure 9,
Fill in the missing time and answer the
questions.
&= 2
[}
&~ o &
& S &
¢ /& o
& S8/ €
a, Fran 5:09 5:46
b, Ana M 7:56
c. Dan 5:19 112
d. Diara
a. Roxannae

d. Diane left for the party at 5:15.
The trip took 38 minutes. When
did she arrive at the party?

e. Roxanne left for the party at 5:12.
She arrived at 5:31. How long did
the trip take?

Figure 10.

Fill in the table. Then decide which brand of
corn ¢ost the leas! for each ounce.

3 4
C:No C&o

Brand A 20

Brand B a5

Brand C 30

Fractions

The most important linkage for fractions is with
whole numbers. Students must understand how
fractions and whole numbers form a single number
system. Fractions is not some isolated type of num-
ber skill. This linkage is done by developing fraction
concepts on portions of a ruler, which is a number
line that accommodates both fraction numbers and
whole numbers. Students first write the equivalent
fraction for each whole number on a picture of a
ruler. The students count the number of partsineach
inch, and write that number as the denominator in

each fraction. They then countall the parts to the first

inch marker and write that number as the first nu-
meraior. Next, they count all the parts to the second
inchmarkerand write that number. (Figure 11.) The
ruler representation for fractions intentionally intro-
duces the concept that fractions can be more than

one. Typically this aspect of fractions is withheld
from students, which causes confusion when it is
eventually introduced.

Figure 11.

Write the fraction for each inch.

1 2 3

a. /\/\/\/\!/'\/\/\/\{/\f\/\/\!

1 2 3
In later lessons, students are given a picture of a
fraction and write the numerical fraction. This trans-
lationinvolvesrepresentations that are number lines

(not necessarily in inches} and that are geometric
figures. (Figures 12 and 13.)

Figure 12.

Write the fractions.
1 2 3
N .

1 2 E]

Figure 13,

Write the fractions.
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Connections in Third Grade Math—cContinued

Once students understand the basic concept of a
fraction, they evaluate fractions as being more than
one, equal to one, or less than one. This evaluationis
confirmed by drawing a picture of the fraction. (Fig-
ure 14.)

" Figure 14.

Circle mare than 1, less than 1
orequais 1. Then shade the paris
of the picture.

4 More than 1

a. T Less than 1
Equals 1

4 Mare than 1

b 3 Less than 1
Equals 1

5 More than 1

G- -75— Less than 1
Equals 1

Next, students add and subtract fractions. They
must first recognize that these operations can only
take place if the fractions have the same number of
parts. It's analogous to trying to add apples and
oranges. Students have to think of them differently,
as piecesof fruit. Then addition is possible. Students
eventually will learn to think of thirds and fourths
differently, as 12ths. At this point, however, stu-
dents are expected only to recognize that addition
and subtraction of fractions require the same de-
nominators (Figure 15).

Figure 15.

Draw a line through the problams you can't
work. Then work the rast of the problems.

a3 2 ______
4 3 B
6.3 8 __
i0 " j0 B
17 _ 8 _ -
5 g 7 -
a18_ 9 __
3 3" -

Asmentioned earlier, students learn to relate frac-
tions to whole numbers by writinga fraction for each
whole number. They determine the fraction to write
by counting the parts on the number line. The
relationship between fractions and the correspond-
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ing whole numbers is an important concept in more
advanced work with fractions—simplifying fractions.
When students are expected to write 12/3 as 4, the
students are expressing the equivalency between
those two values on the number line. At this more
advanced stage of work with fractions, always
counting on a number line is too slow and cumber-
some. Students need to learn the relationship between
fractions and multiplication. This instruction entails
rotation of the multiplication number families to
express the relationship between fractionsand whole
numbers. Here are several examples where the
number family is rotated 90% so that the arrow
points up. '

9 (18 1

[as]

=8

|

9
2118 becomes

2 which is the same as

7135

7
513  becomes 9

Exercises the students work depict these relation-
ships, first in relation to the number line. (Figure 16.)
For each whole number, students link the fraction
and the rotated number family. Later, when stu-
dents write the whole numbers for fractions, the
students must rely on their knowledge of multiplica-
tion. (Figure 17.)

ol
]
~1

which is the same as

Figure 16.

Figure 17.

a b.
_® _ 1
— 4 -7




At this point, students are shown a final relation-
ship with fractions—division. The multiplication
number family is returned to its original position.

T |14

7 7
z becomes 2[ 14 which is also 2 [ 14

3& 5 5
7 becomes 7 [ 35 : which is also 7| 35 '

Thus, students are shown that

3:75 ] isthe same as_/,'%‘

Students work exercises thatinvolve completing the
related division problem and fraction. (Figure 18.)

In summary, rather than learning many different
notions of fractions, students learn the relationship
between fractions and whole numbers. Both multi-
plication and division come into play in demonstrat-
ing these relationships.

Figure 18.
a 5[ 40 — | =
|

Division is then linked to the place value system
represented by coins. (Figure 19). Children work
problems with divisors of 5, representing nickels.
Remainders are represented with pennies. Students
determine the number of nickels, the quotient, and
the number of pennies, the remainder, for each
problem.

The third-grade level of Connecting Math Concepls
was designed and field tested to develop both un-
derstanding and proficiency in mathematics. The
strategies described in this article are taught system-

Figure 19.

....@...

a.5[42 b.Sm c.S[W
[P [ P [ P

atically over many lessons. The learning that can
result from this program not only is valuable in its
own right but also sets the stage for far more
sophistacted problem solving in later grades, which
is described in the next article. ¢
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by Don Steely, Systems Impact Inc.
Doug Carnine
Siegfried Engelmann, University of Oregon

‘The National Council of Teachers of Mathematics
claimed in 1980 that “problem solving must be the
focus of school mathematics in the 1980"s” {p.2) and
again emphasized it in their 1989 Standards, “The
development of each student’s ability to solve prob-
lems is essential...” (p.5) '

Despite the concern about problem solving over
the lastten years, educators have not yetevenagreed
on its definition. Some have decided that problem
solving involves written problems that “require
students to read several sentences, decide how to
organize the problem, and to solve or compute the
problem they have created” (Wheeler & McNutt, 23
303, 1983). Some think that problem solving “should
involve a child in gathering, organizing, and inter-
preting information so that he can use mathematical
symbols to describe real world relationships”
(Ashlock, Johnson, Wilson and Jones, p. 239, 1983).
Still others see it as a “selected sequence of activities,
situations, contexts, and so on, from which students
will, it is hoped, construct a particular way of think-
ing” (Thompson, 1985, p.191).

Probably greater consensus could be reached ona
general statement of what we want students to be
able to do, and that would be something akin to
“being able to select and use a wide range of strate-
gles or strategy combinations to solve a wide range
of problems that vary in complexity and type of
information given.” This general definition of
problemsolving encompasses six prominent areas of
mathematical problem solving researchas su ggested
by Kameenui and Griffin (1 989)—cognition,
metacognition, learner characteristics, word problem
characteristics, word problem classification, and in-
structional techniques and programs-—as well as the
three general factors of student achievement as
suggested by Porter (1989): learner aptitude, peda-
gogical practice, and opportunity to learn.

Cognition, Metacognition, and Learner Aptitude

Cognition, metacognition, and learner aptitude
can be grossly categorized as internal learner vari-
ables. They are not directly observable and can only
beinferred by judging how well the learner performs
on specific tasks.

Although the following definitions of cognition
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and metacognition will surely draw some criticism,
they are general enough to perhaps allow agreement
on the overall dimensions. Cognition is rmultidi-
mensional knowledge that allows students to under-
stand and interpret the problem and then to arrive at
a decision about what approach should be taken to
solve it. Metacognition is that ability which allows
students to link and organize knowledge in a way
that facilitates solving complex, multifaceted prob-
lems (Prawat, 1989; Polya,1973;Flavell, 1971; Bruner,
1960).

Regardless of exactly how cognition and
metacognition are defined, they are acquired capaci-
ties. They are the result of what students learn, and
what studentslearn is primarily a result of the direct
and indirect instructional experiences the student
receives. If students are not proficient problem
solvers, the instructional experiences have not been
effective, or those experiences have inad vertently
taughtinefficient or undesired strategiesand linkages.

Of course learner aptitude affects a student’s
competence at solving mathernatical problems, both
in terms of cognition and metacognition. These
characteristics include computational ability (Balow,
1964}, verbal ability (Alexander, 1960), general intel-
ligence (Aiken, 1971), and knowledge of underlying
numerical and fundamental arithmetic concepts
{Chase, 1960). Like cognition and metacognition,
these learner characteristics are a result of what
students have learned and are a product of students’
instructional experiences, though genetic factors can
certainly be assumed.

Inherent in every new experience with a stra tegy
or combination of strategies is relevant background
knowledge that the learner must apply to utitize the
strategy. The skills and abilities the learner brings to
this experience directly affect the learner’s ability to
acquire and link the new strategies. If the relevant
background knowledge is not present, then the ex-
perience with the strategy requires the learner to
leap beyond his/her level and learn the background
knowledge and strategy simultaneously, which can
easily result in confusion.

Regardless of why the learner did not attain cer-
tain characteristics or background knowledge, the
lack of those abilities may seriously impact the de-
velopment of the learner’s cognition and
metacognition, the learner’s ability to master and
link strategies. It is a variable of the “experience”
that must be dealt with by the instructional program.



Pedagogical Practice-Instructional Techniques and
Instructional Programs

Instructional techniques are the methods we use
to convey the content of the program, the endless
stream of “experiences.” Some techniques may be
effective only with certain types of content, while
other techniques are useful across a wide range of
content. While curricular programs and techniques
can be analyzed independently of one another, they
are sometimes so tightly woven that it is difficult to
separate them. As a unit, they determine how well
thestudentslearn from the experiences. For example,
we may have a very elegant program and still not
produce competent problem solvers due to poor
techniques, such as a lack of sufficient practice, an
over-dependence on teacher dialogue, or a lack of
sufficient structured and guided practice. On the
other hand, we may have very good techniques
coupled with a very poor program and reach the
same outcome, poor problem seclvers.

In reviewing three studies, Porter (1989} summa-
rizes four weaknesses that directly affect the devel-
opment of problem-solving skills. The first three of
these weaknesses are associated with instructional
techniques: (1) an inordinate amountof time is spent
teaching computational skills, at the expense of
conceptunderstandingand problem solving (further
corroborated by Perkins and Simmons (1988) and
Hamann and Ashcraft (1986)}, (2) 70% or more of the
topics covered received less than 30 minutes of in-
struction time (these were “taught for exposure”), (3)
large differences exist in the actual amount of time
teachers spend teaching mathematics.

The fourth weakness, the “low-intensity curricu-
lum,” wasalso cited by the 1987 Second International
Mathematics Study, which lays the major blame of
poor student performance on the spiral curriculum.
“Content and goals linger from year to year so that
curricula are driven by still unmastered mathemat-
ics content begun yearsbefore.” {(p.9) Asanexample,
thetopicoffractionsisintroduced in the kindergarten
levelofa199] edition of one math series and continues
through grade 8. According to the suggested pacing
guidelines, by the end of 8th grade students will have
spent more than 120 days on fractions, most of it
reviewing and reteaching skills from previous years.
The analysis of another currently popular math series
shows that 76% of the material in grade 6, 80% in
grade 7, and 82% in grade 8 is review. Despite this
siginificant amount of instruction and review, other
factors must be involved. Why can only one-third of
seventh gradestudentsadd fractions suchas 1/2and
1/3 (Peck, 1981)?

A study currently underway at the University of
Oregon has identified a number of these factors
(Carnine, in press). Although content is reviewed

from year to year, review is inadequate. Immediate
and frequent review israre, and in one program new
material was reviewed anaverage of only once every
20 days.

A second factor has to do with the instructional
strategies used in teaching problem solving. Those
strategies often cover only a very limited range of
problem types (such as a fraction followed by “of”
means multiply), or are so general they do not gen-
erateany specific plan for dealing with any particular
problem (such as “Read, Plan, Sclve, Check”).

A third factor is the rate at which new conceptsare
introduced. Although a great amount of time is
spentona particular topicin a textbook, most lessons
present many new concepts simultanecusly, often
attempting to teach every variation and nuance.
Sporadic review, vague strategies, and rapid rate of
introductionof new conceptsexacerbate the problems
brought about by a low-intensity, spiral curriculum.

Opportunity to Learn—The Problems to be Solved

Although many educators do not consider word
problems to be problem solving, word problems are
the most frequent manifestation of problem sclving
in textbooks. Admittedly, word problems represent
only one type of problem solving behavior; however,
they are important and have been the subject of
extensive research.

Problem characteristics that have been shown to
be important variables in the difficulty of problems
include semantics (DeCorte, Verschaffel, & DeWin,
1985; Riley Greeno, & Heller, 1983; Sandburg & Do
Ruiter, 1985}, syntax (Larson, Parker, & Trenholme,
1978; Wheeler & McNutt, 1983; Moyer, Moyer,
Sowder, & Threadgill-Sowder, 1984; Greeno, 1980,
Heller & Greeno, 1978) and the presence of extraneous
information{Arter & Clinton, 1974; Carpenter, Hiebert,
& Moser, 1981; Cohen & Stover, 1981). Other charac-
teristics that have been researched include guestion
placement (Arter & Clinton, 1974), order of numerical .
data (Burns & Yonally, 1964; Cohen & Stover, 1981;
Jerman & Rees, 1972; Rosenthal & Resnick, 1974),
presenceof tables, charts, or pictures (Moyeretal., 1984)),
and number of steps required to solve theproblem (Loftus
& Suppes, 1972; Mayer, 1982; Quintero, 1983).

Two general types of classification systems for
problems have been proposed: (1) learner-derived
strategies and (2) task-driven requirements of the
problems. If it is accepted that learners develop
problem-solving strategies based on instructional
experiences, then learner derived strategies are cir-
cuitous. Inany program, problems are not presented
entirely at random. They are presented in an order
based on certain suppositions about useful strate-
gies. The learner learns those strategies, as well as
others that are unintended. The instructional expe-
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Teaching Probl

riences associated with those problems either foster
or hinder the development of competent problem
solving. Certainly it is interesting to see how the set
of instructional experiences has been interpreted by
the learner. However, the learner’s interpretation
cannot then be used to justify a learner-dervied clas-
sification system that then becomes the basis for
selecting an order for presenting problems.

. The other tactic for classifying problems is based
on the requirements of the problems themselves.
These analy‘ses have focused on actions (Underhill,
1977), degrees of abstraction and factualness
(Caldwell and Goldin, 1979), hierarchical task analy-
sis (Silbert, Carnine & Stein, 1991), and tonceptual
groupings (Peterson, Fennema, & Carpenter, 1989).

Instructional programs are the sequences of ex-
periences (problems of different categories with
different characteristics) presented to the learner.
Which problem characteristics are dealt with, and
‘how problems are classified define the student’s
opportunity to learn problem solving. This is an
often overlooked determinant of opportunity to learn.

Summary (Part 1)

Although there are many facets of problem solv-
ing ability, most, if not all, depend on prior instruc-
tion. Cognition and metacognition are the results of
the student’s experiences. Likewise,learner abilities
are a function of what has been previously experi-
enced and mastered. Instructional techniques, while
crucial to the effective transmittal of these experi-
ences, is distinct from the actual curriculum-based
experiences. This leaves the curricular material, the
experiences with solving problems, as the starting
point, the cornerstone.

Any curricular program consists of much more
than just problem solving. In fact, non-problem-
solving partsof the programactually determine what
types of problem solving experiences can be rea-
sonably atternpted. However, itisthe problemsolving
component that has received the most interest, be-
cause it represents higher order thinking, is more
difficuit to teach, and is generally less effectively
taught. _

The development of an effective instructional
program for teaching problemsolving skills requires
a classification of problems that accounts for the
entire range of praoblem types and relevant charac-
teristics. The program must also insure that the
learner abilitiesinclude all of the relevant and neces-
sary background knowledge (non-problem-solving
abilities). If these cxperiences are developed well,
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Solving—Ccontinued

and if they are combined with good teaching tech-
niques, then thereis a reasonable chance of further-
ing the learner’s cognition and metacognition.

The system for classifying problems and dealing
with the wide range of problem characteristics defines
the strategies presented ina program. Thesestrategies
can be numerous, each dealing with a small range of
problems, or can be fewer and more general, based
on important samenesses shared by all the problem
types. The effectiveness of these strategies directly
affects the student’s ability to use any one particular
strategy and to link strategies. The importance of
identifying samenesses for developing these strate-
gies and their inter-relationships is the subject of the
remainder of this paper.

Problem Solving in Grades 1 though 4

In the primary grades, poor problem solving skills
arise primarily from an inability, or possible refuc-
tance, of mathematics educators to devise explicit
strategies that students can learn and successfully
apply. The consequence is the avoidance of any but
the mostrudimentary type of addition and subtraction
word problems in primary textbooks (Peterson,
Fennema & Carpenter, 1989}

The followinganalysis, taken from Connecting Math
Concepts (Engelmann & Carnine, 1991), teaches stu-
dents to see the relationship between the situation
described in a story problem and the concept of a
number family composed of two small numbers and
a big number. As noted in the previous article,
number families are first used to teach basic addition
and subtraction facts. The number family structure
prompts important relationships between addition
and subtraction and reduces the number of sets to be
memorized from 200 to 55.

Teaching the fact number families also promotes
the integration of the concepts of addition and sub-
traction. When a small number is missing in a num-

ber family, {e.g. = Zpu ), the students learn to
start with the big number and subtract the smaller
number shown: 17- 9=__. Conversely, if the big
number is missing, e.g. 2 ®, ,the students
add the two small numbers to determine the big:
number: §+9=__ .

Number families provide a “map” that can be
used to diagram the various types of word problems.
The number farnily map in turn leads to setting up
the addition or subtraction calculation. The strategy
tcaches students not to make quick judgments be-
cause of the presence of a “key” word such as more.
First, students graphically represent the situation



described in the word problem. Second, they deter-
mine how to write the number problem.

In the word problem below about Mark, at-risk
students are likely to add 66 and 121, because the
problem says that Mark will gather more nuts. How-
ever, adding 66 and 121 does not lead to the correct
answer.

Mark gathered some nuts before lunch. After lunchhe
gathered 66 more pounds of nuts. Atthe end of the day
he had 121 pounds of nuts. How many pounds of nuts
did he gather before lunch?

This problem tells about getting more. So the

students write the small numbers first and end with .

the big number, the pounds of nuts Mark had at the
end of the day. As students have learned from
working with number families, the two small values

goon top of the arrow and the big number goes at the

end: = %

The students then apply what they have learned
about the relationships between addition and sub-
traction families to compute the answer. When the
unknown in a number family is a small number, asin
this example, the number family can be translated
into a subtraction problem (121 - 66 =__) to produce
the other “small number”: 121 - 66 = 55.

In the following comparison problem, many stu-
dents will subtract because of the words “weighed
less”

Mark weighed 46 pounds less than Lois. Mark weighed
102 pounds. How much did Lois weigh? -

Thesentencethattellsaboutthecomparison, “Mark
" weighed less than Lois,” tells that Mark must be
represented by a small number. That same sentence
indicates that Mark weighed 46less, so 46 is the other
small number. By default, Lois is the big number.

48 M
R o
The problem also gives a number for Mark, so
Mark can be replaced with 102.

46 1.-2?[_

Because the problem states both small numbers,
the students write an addition problem, 46 + 102=__,
which tells how much Lois weighed.

Classification problems can use the same heuris-
tic. To work these problems, students need to under-
stand the relationships among the classes named in
a problem. For example, hammers and saws are

members of the bigger class, tools; or, as in the:

following problem, chairs and couches are members
of the larger class, furniture.

A hotel is going to buy 112 pieces of furniture, ]t needs
to buy 57 couches. The hotel will buy chairs for the rest
of the furniture. How many chairs will the hotel buy?

. Furniture is the “big” class, and the names for the
subordinate classes go in the places for the “small”
numbers.

couches chalrsl furmiture

The problem gives one of the small numbers,
couches, and the large number, furniture.
57

a

The students know the big number, so they sub-
tract: 112-57 = __. The answer gives the number for
chairs.

This same number family heuristic also works for
multi-step addition/subtraction problems that in-
volve a person having some money, spending some
money and then ending up with some money. In
these problems, the money a person has is always the
big number.

Fran had $36. Then her mother paid her 512 for work
around the house. Fran wants to buy a blouse, but she
nieeds to keep $14 for a bike light. How much can Fran
spend on a blouse?

Two numbers must be added to find how much
Fran has.

ends with can spend
536 + $12

haa

The amount she must end with is substituted,
$14
endswh  canspend 948
et
has

Theresulting problem, 48-14=__, gives theamount
Fran can spend on a blouse.

This same type of analysis applies when multiple
amounts are spent: '

Franhad $42. Shespent $18 on running shoes. Shespent
$4,20 on school supplies. How much did she end up
with?

$22.20
FHE-rid20
P 542
Ras

ands with

and when multiple amounts are earned and multiple
amounts are spent:

Cinger had $42. She earned §12 at her job, She went to
the store and bought a swimsuit for §25 and swim fins
for $16. Ginger gave her brother the 56 that she owed
him. How much did she end up with?

47

speng- 54
AP
Fas

ends wilh

In the following problem type, students must
identify the relevant information from a table before
they can add and then subtract.
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Eam Spend
Mow thelawn  $5.00 Goldfish bowl 8.00

Clean the garage 7.00 Running shoes  28.00
Babysit B.00 Skateboard 45.00
Sell your bike 40.00 Movie ticket 6.00
Win a prize 9.00 Music tape 11.00
Receive allowance 12.00 Sweatshirt 21.00

Gloves 18.00

Socks 4.00

Henry has to earn money to buy some things he wants.
He mows thelawn and sells his bike. With the money
he makes, Henry buys a tape and running shoes, Haow
much does he end up with?

a9
= g
snds with  Spamd™ 45
Sl
hes

The problem45-39= __ gives theamounthe ended
with, ‘

Thisnumber family heuristic will continue to pro-
vide a concrete strategy when students incorporate
multiplicationand division, Key words, such aseach,
every, and egqual parts, cue the students that multi-
plication or divisionisinvolved, and not addition or
subtraction.

To differentiate multiplication/division number
families from addition/subtraction number families,
students write the families this way:

5 Iin-w
The big number is still at the end of the arrow.
Also, 55 families yield all 200 facts. For the 2-9-18
family, the factsare2x9=18,9x2=18,18+2=9,and
18+9=2.

The number family analysis also applies to multi-
plication and division word problems.

If each shirt requires 2 yards of material, how much
material will be needed to make 5 shirts?

This problem tells about yards of material per
shirt, or:

yards
shirt

which canbe written as yards +shirts or shirt yards.
The quotient expresses shirts per yard and thus the
number family becomes

yards

‘shirt
shifs ’—Ibyards
The students put in the values they know
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2
yas

It
5 shirg ‘-—b-yards

and then select the operation. The two small num-
bers are given, so the students multiply to determine
the big number, 5x 2 = __. Five shirts would require
10 yards of material.

The number family strategy provides students
with a explicit means of dealing with a wide rhnge of
problemclassificationsand problem wordings across
all four basic operations. There is a sameness in all of
these problems that is emphasized by the strategy, a
sameness which allows students to use one strategy
to analyze and solve all the various problem types.

Problem Solving in Grades 5 through 7

The analysis of ratio/proportion problems in
grades 5-7 provides another example of the economy
of teaching samenesses. Typicalinstructioninvolves
showing the students how to set up a ratio for a
particular type of problem, e.g., using map scales,
and having the students solve similar map scale
problems in which the missing part of the ratio is
either the top or bottom of the second fraction. On
this map, one inch represents 5 miles. How long would a
line be for a distance of 14 miles? Depending on the
instruction of a typical program, students may only
see one or two other treatments of ratios in lessons
that appear severdl months later.

However, a thorough sameness analysis of ratio
problems (Systems Impact, 1988) would include many
more types of problems. In the first group of ratio
problems, students set up the labels for a ratio based
on repeated unit names.

Five packages make 4 gallons. Seven Packages would make
fiow many gallons?

Packages Gallons
S A
7 n

They then fill in the numbers to complete the ratio
and solve it.

Given this analysis, students can set up ratios in
which:
o the unknown is in the first fraction:

Ifascale drawing shows that 5 om equals 12 km, how lung is
a line that shows 15 km?

Centimeters Kilometers
S 12
n 15



= the question comes first:

How many cents will 7 packages cast if it costs 45¢ for 5

packages?
Cents Packages
N Z
45 5

the order of the datia is inverted:

If a car travels 200 miles in € hours, in 8 hours how many
miles could it travel?

Miles Hours
200 b
N B

« extraneous information is given:

Sam ismaking punch for 15 friends. If 5 packages of mix make
4 gallons of punch, how many packages will he need ta make
7 gallons of punch?

Packages Gallons
2 4
n 7

the information is given graphically or in a table

Brownies—makes 15

2 cups flour

1/2 cup butter
Brad has a recipe for making 15 brownies but he needs to make
24 brownies, How much bulier does he need?

This analysis also permits the inclusion of percent
problems. Percent problems are normally taught as
three entirely different problem types, depending
upon which parts are known. If both numbers are
known, the strategy is usually to divide: The team
played 50 games and won 44. What percent of their games
did they win? This problem translatesinto 44+50=[].
If the problem tells a percent and gives the total
number, the strategy is to multiply: The team played
50 games. They won 88% of their games (50 x .88 =[1).
If the problem tells the percentand a part of the total,
the strategy usually requires an algebraic solution:
The team won 88% of their games. They won 44 games.
How many games did they play? (.88x = 44). However,
all of these types can be handled through the same
ratio strategy.

The team played 50 games and won 44. What percent of
their games did they win?

Percent Games
A 4
100 50

The team played 50 games. They won 88% af their games,
How many games did they win?

Percent Games
R o
100 50

The team won 44 games. They won 88% of their games. How
many games did they play?

Percent Games
8 u
100 n

By teaching the common convention that all of a
number is 100%, students can use the same analysis
to solve many other types of percent problems.

aEight is 52% of what number? Number Percent
“Eight is 52%" translates into this row 8 52

“Of what number” translates into this row n 100

70 is what percent of 257
“70 is what percent” translates into thisrow 70 n
“of 25" translates into this row 25 100

» What number is 42% of 307
“What number is 42%" translates into thisrow n 42
“of 30" translates into this row 30 100

By learning the common convention that “per
hour” means “per one hour” , students can use the
same analysis to solve rate problems. Rate problems
are normally taught with another strategy that re-
quires memorizing the formula D=RT, or in some
programs, memorizing all three variants of the for-
mula.

Miles  Hours
¢ Ifa plane travels 650 miles per hour, 650 1
how many miles will it travel in 3 hours? n 3
»  What is the average rafe of o car that goes n 1
450 miles in 9.5 hours? 450 9.5
*  How long will it take the train to go 540 540 n
miles to Rome if it travels at 120 mph? 120 1

This analysis thus far has included problems that
give just two references to the same units, e.g. miles
and hours are mentioned (or directly implied) twice
in the problem. However, this same analysis can be
extended to more elaborate problemsin which one of
the “unit” names is a classification. These problems
require setting up a table, but the same basic struc-
ture applies.

120 skiers can go on a ski trip. Forty percent must be good
skiers. The rest can be beginners. How many beginrters can
go?
The units are skiers and percents. The class of
people include good, beginners, and total people.

Skiers
goad
beginners

total
Numbersare given for total skiersand percent good
skiers. The total is always 100%, so that number can
be filled in. The percent for beginners can be calcu-
lated by subtracting 40% from 100%.

Percent
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Skiers Percent
good 40
beginners (60)
total 120 (100}

A ratio can now be written using the row with the
missing number for beginners and the row with two
values.

Ratio
4 - 80
120 100

The same analysis and structure with the table

applies to a wide range of problems. For example:
75% of the mizture must be sand. The rest is gravel. 800

pounds of the mixfure is needed. How many pounds of gravel
must be used?

Pounds Percent Ratio
sand 75 o _ 25
gravel (25) 8¢ T 100
total 800 (100)

The discount on an item is 25%. The regular price is $14.50.
How much is the sale price?

Dollars Percent Ratio
sale price {75) - & _ 75
discount 75 14.50 100
total 14.50 (100}

A mixture contains peanuts and almonds in a ratio of 5 1o 1.
If 7 kilograms of almonds are used, how many kilograms of
mixture is made? How many kilograms of peanuts are used?

Kilograms Ratio Ratio
peanuts 5 7 _ 1
almonds 7 1 n &
total (6)

A truck i5 going to haul 10 canoes, 8 rowboats, and some rafts.
If the truck can hold 30 boats, what percent will be rafts?

Boats Percent Ratio
canoes 10 12 o
rowboats 8 30 100
rafts  (12)
tatal 30 100

The dealer’s cost for an item is $5.70. f he marks up the
item 45%, what is the marked-up price?

Boats Percent Ratio
cost 5.70 100 .70 100
markup 45 n 145
marked-up price ' {145)

jnh.n warked for 42 minutes mowing, trimming, and
sweeping, If he mowed grass 1/2 of the time and
trimmed for 1/3 of the time, how long did he spend

sweeping?
Minutes Fraction Ratia-
mow 1/2 - on _ 1/6
trim 1/3 42 1
sweep (1/6)
total 47 1
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The list of possible problems can be extended to
include more problem types involving won-lost per-
cents, percentincreases and decreases, problems that
require students to change one unit of measure to
maich another, averages, and probability.

This sameness analysis takes a single basic skill of
setting up a ratio based on repeated unit names,
explains what 100% means, demonstrates how to put
data into a summary table, and ends up covering
literally hundreds of different problem types thatare
normally taught as unrelated problems.

A General Paradigm for Problem Solving

These examples illustrate how the sameness
analysis can lead to a more coherent, elegant, and
linked understanding of word problems, rather than
fragmented knowledge and strategies. The overrid-
ing purpose of sameness analysis is to foster coher-
ent schemas. Although this goal implies great ambi-
tions, how does it apply to problems beyond those
involving number families, equations, and ratios;
i.e., whatis the broader scope of sameness analysis as
it applies to problem solving in mathematics?

The Type-Process Matrix (Figure 1) attempts to
assimilate both an analytical type categorization of
problems as well as a process analysis for developing
higher-order thinking skills. There are three basic
dimensions that are applicable to our analysis of
sameness, represented in Figure 1 by the arrows: (1)
the type dimension, (2} the variation dimension, and
(3) the process dimension. Although there are sig-
nificant interactions between these levels, we'll deal
with them one at a time.

The type dimension is the starting point that lists
the concepts and problems that are being consid-
ered. This dimension will change as we include
examples of more problems across more grade levels
and as the students become more sophisticated. For
the purpose of this article, assume that the range to
be considered consists of word problems typically
found in secondary math texts.

The sameness analysis across this dimension asks,
“When all of the concepts and problems within this
universe are considered, what similar solution strafe-
gies appear?” Given our universe of word problems,
we would classify the ratiofproportion solution
strategy that applies to ratio, percent, rate, and prob-
ability as one type.

Anothersetof problems that hasa similar solution
strategy, one quite different from ratios, includes a
widerange of problems that deal with trigonometric
ratios (sine, cosine, tangent). This common solution
strategy represents a second type.



Figure 1. Type-Frocess Analysis Matrix for Secondary Word Problems
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A third type of word problem translates into two-
step algebraic equations, e.g., age, coin, and mixture
problems that deal with percent concentrates or ex-
press the value of one unknown in terms of the other.
Again, these problems can all be splved with a com
mon solution strategy. '

The result of a thorough sameness analysis across
the type dimension gives us types of problems grouped
according to common solution strategies. The number
of typesdepends onhow greatourrange of examples
is and how well we can determine samenesses in
problems that may appear quite different. There
may be problems that could be classified as belong-
ing to a particular type but are so different in so many
respects that students would find it difficult torecog-
nize the sameness. These problems are usually ex-
cluded. Practical concerns such as these illustrate
that the matrix is not intended to be exhaustive for
theoretical purposes but practical for guiding the
design of curriculum.

The variation dimension deals with all possible
variations within a single type of problem. Depend-
ing upon how we have defined our type dimension,
these variations may be seemingly infinite. But for
the sake of simplicity, let’s continue with our analy-
sis of word problems, starting with a basic ratio
problem type (e.g., “If 5 packages make 4 gallons, 6
packages make how many gallons?”). What are the

possible variations that apply to this problem and
might also apply to other such word problems? We
could: ‘
* put the question first or in the middle

¢ change the order of the numbers

» change the syntax of the problem

e give information that is not needed

e make the problem more “real life”

= change the perceived interestlevel of the problem

These, and others, would not only be variations of
this single problem type, butalso variations for other
ratio/proportion types and other non ratio/propor-
tion types. There are probably other variations as
well as combinations of variations.

The goalinanalyzing the variation dimensionis to
expand the range of application through the transfer
of a strategy to new problem variations. Forlearners
to fully understand and appreciate the power of a
solution strategy, they must see that the solution
strategy applies across all variations of the type.
Despite the putward appearance, problems withina
type are the sarne in terms of the solution strategy:

o Putting the question at the front of a problem

doesn’t change the structure.

* The order of data in a problem is sometimes

mixed up, but that doesn’t change the struc-
ture.
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« Extraneous information in a problem is irrel-

evant and doesn’t change the structure.

These generalizations about problem structure
are also important when other solution strategies are
taught; less time will be required to show the solu-
tion strategy sameness across the variations.

The process dimension comes into play when, at a
minimum, one particular solution strategy must be
differentiated from other strategies. On the simplest
level (linkage 1 in Figure 1), analysis of the process
dimension must look at problem types that have
similar solution strategies and determine how stu-
dents can tell which solution strategy to use. For
example, how do students know whether or not to
use a table for a ratio problem (i.e.how do students
know if the ratio problem is a type 1, 2 or 37).

On a slightly more complexlevel (still linkage 1in
Figure 1), the analysis must look at all problems ina
‘solution strategy and determine what they have in
common that allows the students to determine when
to use that solution strategy as opposed to quite a
different solution strategy. Certainly this is a direct
reflection of samenesses that led to similar solution
groups when the type dimension was firstanalyzed.
As an example, “What determines if the following
problems can be solved with a ratio strategy or with
a different strategy that involves a two-step alge-
braic equation?

A mix contains peanuts and alronds ina ratio of d lo 3. If36

pounds of mix are made, how many pounds of elmonds will be
used?

A mix conlains peanuts, costing §2.00 per pound, end al-
monds, costing §5.00 per pound. Thirty-six pounds of mix
are mede and it sells for $4.00 e pound. How many pounds
of peanuls are used?

Both problems seem to fit a ratio setup; the first
gives information about pounds.

Pounds Ratio Ratio
peanuts 4 a3
almonds__ n 3 36 7
total 36 (62}

The second problem, however, gives information
not about dollars, but about dollars per pound. The
second problem requires a table from which an alge-
braic equation can be derived:

Pounds  %/Pound Dollars
peanuts  ix] 2.00 [2x]
almonds  [36-x] 5.00 [5 36—x]
total 36 4.00 [2x + 5 (36-x}]

Obviously this process dimension is in a constant
state of flux, as new solution strategies are continu-
ally being learned and linked.
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On a more complex process level (linkage 2 in
Figure 1), learners must know all the attributes of
problems that can be solved witha particular solution
strategy. This becomes imperative when a probiem
is incomplete, or when one of the requisite pieces of
information must be calculated before it fits the
standard problem type. For example, a ratio problem
requires 2 unit names and numbers for 3 of the 4 values in
the ratio before it can be solved. The following
problem requires the addition of numbers before a
recognizable problem type emerges.

Sam used 2 cups of sugar to make 2 quarts of punch. It wasn't
sweet ertough, so he added another cup of sugar,and them one
more to make the punch sweet enough. If Sam needs to make
5 quarls of punch, how much sugar will he need?

Cups Quarts
2+1+1 _ 2,
n 5

The sugar and punch example actually requires
two separate solution strategies—adding and solv-
inga ratio. However, at the secondary level,asimple
addition problem is probably too elementary to be
included in our range of problem types. It may be
considered an “internalized learner process.” Over
time, more and more of the solution strategiesbecome
“internalized” or automatic.

Linkage 2 in Figure 1 also includes gathering data
so as to have sufficient information to solve the
problem. For example, students could actually taste
three samples of punch made with two, three, and
four cupsof sugar. Thesample preferred by the most
students would determine the number of cups of
sugar to put in the ratio. .

On an even more complex process level (linkage 3
in Figure 1), learners must apply this sameness
analysis to problems that may truly combine two
different, non-internalized, solution strategies.

A 50 foot tower sits on a kill. John's line of sight to the top of

the tower is 42°. His line of sight to the bottom of the tower
is 30°. How tall is the hill?

2

Two solution strategies must be used for this
problem. Firststudents must recognize that they can
find the hill height by using the standard sine ratio,

h

sin30¢ = —
b

But to use this ratio, they must first find the value
of b, which they can do by using the law of sines,

«&n  Tha engle al ine tawar
10p Is 48° {42+48=30).

The angle encampasing
tha tawar is 12° {42-30}.




b - 50
sin 458° sin 12°

In this example, using the law of sines to deter-
mine the line-of-sight distance to the bottom of the
tower and then using the sine ratio to solve for the
hill height are closely related strategies. In other
problems the two solution strategies may be more
different. |

Itis conceivable that every solution strategy could
be combined with every other strategy. Since each
strategy may apply to several problem types, we are
left with an enormous number of combination prob-
lems. Just consider this last example—we could
word the problem so that after using thelaw of sines,

® the height must be figured by a ratio

e the height must be figured by using an alge-

braic equation ‘

® the height must be figured by using the law of

sines again

Due to time constraints, it would be impossible to
teach all of the possible combinations of all solution
strategies and problem types. This fact emphasizes
the importance of insuring that the learner has a
complete understanding of the characteristics of each
solution strategy and the similar problem types that
strategy will work for. Students might then have
acquired the metacognition to monitor the selection
of strategies and strategy combinations thatmight be
required for a particular problem.

The process described by linkage 4 in Figure 1
gives students the option of picking from 2 or more
appropriate solution strategies. Although a problem
type may have been taught using a particular solu-
tion strategy, other possible strategies will often be
possible. As students learn these new strategies,
they may realize that a problem can be solved in
different ways. As a simple example, consider the
following problem:

Apiece of rape 18 feet long must be divided into 5 equal parts,
How Iong a piece will each person receive?

This problem would most likely have been taught
using a number family solution:

feat
person
5 " Ject 18
The big number is given, so students must use
division to find the other small number—18 +5=13.6
This problem could also be solved asa ratio prob-
lem:

Feet Persons
18 S
n i

In more complicated problems, students may be

able to solve parts of the problem in different ways.
This type of linkage requires firm mastery of previ-
ous linkage levels. Although it is enlightening to
show students their options, instructional time is
often so limited that this last type of linkage is left
primarily to incidental learning.

Summary (Part 2}

Within the type dimension in Figure 1, the analy-
sis shows which problem types can be solved with
the same strategy. This will give guidance to the
order in which to present different problem types.
Instead of different types of problems being frag-
mented, they can be more economically taught as a
sequential group. The learner benefits from more
rapid assimilation and more comprechensive under-
standing of how the types are related.

Withinthe variation dimension, the analysisshows
common variations across different problem types

.and groups of problem types. Once a particular

variation has been shown across several members of
that group, transfer to other members of the group
occurs, ltisnotnecessary to show all variations with
all types.

Within the process dimension, the analysis re-
veals the characteristics of similar solution groups
that must be shown for the learner to differentiate
between when to use different solution strategics,
when to alter a problem to fit a solution strategy,
when to combine solution strategies, and how to
evaluate solution strategy choices.

The type-process matrix provides a means of
identifying important samenesses and linkages
within a specified set of problem solving experi-
ences. If we want students to beable to selectand use
a wide range of problem solving strategies and strat-
egy combinations across a wide range of problems,
then we must provide them with experiences that
effectively teach those explicit strategies. To be use-
ful, the students must see that the strategies arc
generalizable across a wide range of problems and
must understand all of the components of problems
that can utilize a particular strategy.

The analysis we have presented is complex be-
cause problem solving in mathematics is complex.
Some students, who are facile problem solvers to
begin with, figure out on their own how to solve
these types of difficult problems. Qur concern, how-
ever, is with those atypical learners who require
explicit instruction to be able to develop sophisti-
cated understandings. The research summarized
earlier suggests that this is an obtainable goal. Troni-
cally, explicit guidance in building schemas for com-
plex conlent would probably benefit the vast major-
ity of students, not just atypical learners. ¢
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Textbooks, and Pedagogy:

A Case Study of Fifth Grade

by Jerry Silbert
Doug Carnine
University of Oregon

The purpose of this articleis to compare the teach-
ing of division in two fifth-grade basals published
prior to the new National Council of Teachers of
Mathematics (INCTM) Standards (1989) and the new
editions of those basals that were published after the
Standards. The focus is not on the Standards per se,
which are clearly better represented in the 1991 edi-
tions, buton pedagogy as it relates to lower-perform-
ing students.

In mathematics education, the question is not
“whether to reform,” but “where to begin.” One
place is the curriculum, represented by math text-
books. As Farr, Tulley, and Powell (1987) noted,
“Textbooks dominate instruction in elementary and
secondary schools” (p. 39). This dominance has led
to a closer look at the quality of textbooks. For
example, Osborn, Jones, and Stein (1985) argue that
“improving textbook programs used in American
schools is an essential step toward improving
American schooling” {(p. 10). Such improvement is
particularly important for special education and at-
risk students. :

Stateand local textbook adoptioncommitteeshave
the responsibility for evaluating the quality of text-
books and how well they might accommodate indi-
vidual differences. Unfortunately, state adoption
committees, in an effort to provide a standardized
state curriculum, have in fact produced a “unifor-
mity of curriculum” (Tulley and Farr, 1985). Because
publishing companies mustrespond to theguidelines

The preparation of this paper was supported in part by Grant
HO23D90007 from the L1.5. Office of Education

ivision

of large “adoption states,” almost all textbooks are
very similar. This homogeneity reflects theinfluence
of the size of the state-wide adoptions in California,
Texas, and Florida. To conform to the guidelines in
these states, publishers end up acting as if all stu-
dents “require or benefit from the same instructional
goalsand sequences,” but to theextent that curriculum
uniformity is achieved, “the ability to meet the di-
verse needs of students is reduced” (Tulley & Farr,
1985, p. 1). This observation is confirmed by the
finding that pedagogy and educational research are
seldom mentioned as factors influencing the judg-
ments of selection committee members (Courtland et
al., 1983; Powell, 1986}.

Theinattention to pedagogy and research findings
contributes directly to ineffectual textbooks and in-
directly to the low levels of student achievement in
mathematics. For example, a relatively large per-
centage of the topics taught in mathematics receive
brief coverage (Porter, 1989). Porter’s finding about
use of time is one of the many pedagogical variables
identified inaresearchreview by Dixon (1990). Other
pedagogical variables suggest a number of criteria
for evaluating math textbooks: What provisions are
made to ensure that the students have the relevant prior
knowledge? Is the rate for introducing new concepts
reasonable? ls there a logical coherence in the pre-
sentation of strategies? Do the instructional activi-
ties communicate in a clear, concise manner? 1stherean
adequate fransition, in the form of guided practice,
between theinitial-teaching stageand the stage where
students work independently? Is adeguate review
provided toensure thatstudents will remember what
they've learned?

In 1991, nearly all publishers of basal math pro-
grams are releasing new editions of their math pro-
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grams. These new editions reflect the publishers’
reaction to the recent furor in math education,
crystalized by the new NCTM Standards. However,
in this article we do not describe the extent to which
basal programs conform to the new NCTM Standards.
Rather, we examined the programs according to the
curriculum-design variables mentioned above that
influence the learning of a broad spectrum of stu-
dents. '

Specifically, we evaluated basal mathematics in-
struction in two editions from the late ‘80s that did
not have time to digest the new NCTM Standards and
two editions from the '90s that reflect the new Stan-
dards. Only one publisher had its late 1980s math
basal approved in the three largest adoptionstates—
California, Texas,and Florida. Thesecond late 1980’s
basal was selected becauseit more nearly exemplified
the criteria for instructional effectiveness identified
by Dixon (1990}. This designation did not result from
just evaluating division, but all the major topics in
the text. Because of the basic similarity of all math
basals, the actual differences in pedagogy are slight.
A better description would probably be “slightly
stronger pedagogy.” Because our review of the basal
texts confirmed earlier observations about textbook
homogeneity, we will not single out the two pub-
lishers, but refer to themn as the higher-approval and
stronger-pedagogy basals.

We decided to study two-digit divisor problems
in this paper because that skill requires students to
utilize a wide number of concepts, and is usually
difficult for teachers to teach and for students to
learn. First, we compared the teaching of two-digit
divisor problems in the 1988 edition of the higher-
approval basal and the 1989 edition of the stronger-
pedagogy basal. Then, we examined the correspond-
ing chapters in the 1991 editions. The difficulty of
teaching this algorithm explains, in part, why the
new NCTM Standards deemphasize two-digitdivisor
problems. Using a calculator makes life easier for
teachers and for the students. However, the ‘90s
textbooks still teach the algorithm.

Pedagogical Criteria
Prior Knowledge

Prior o working two-digit divisor problems,
students should have learned their division facts,
subtraction with regrouping, rounding, and how to
multiply a two-digit number by a one-digit number.
Students must learn to carry out this multiplication
in the new configuration shown below.

!
42 [789°
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Both editions of the higher-approval basal and the
stronger-pedagogy basal provide abbreviated teaching
on division facts, rounding, regrouping, and multi-
plication at the fifth-grade level. Each skill is taught
for just one lesson. The assumption seems to be that
the students mastered these skills in earlier grades,
and at this level they needed only a quick review. In
terms of the expectations concerning prior knowl-
edge, the '80s and '90s editions are quite similar.

Students who had notmastered theassumed skills
previously would be in jeopardy because ofthe specd
at which the new skills are presented. For example,
the lesson that teaches rounding in the ‘91 version of
the stronger-pedagogy basal began with a teacher
model of how to round a 5-digit number to the
nearest thousand, then provided a practice set in
which the students rounded tens numbers to the
nearest ten, hundreds numbers to the nearest hun-
dred, thousands numbers to the nearest thousand,
and ten thousands numbers to the nearest hundred
(e.g., 10,564 rounds to 10,600).

Because the programs assume that students can
learn the skills quickly, the success of the studentson
2-digitdivisor problems will depend toagreatextent
on how the teacher monitors the performance of the
students on multiplication, rounding , and subtrac-
tion, and provides any necessary remedies.

Rate for Introducing New Concepts

When students work a problem, they first round
off and then estimate. The estimated quotient may
betoo great or toosmall. The student must learn that
an estimated quotient is too great if it is not possible
to subtract after multiplying. For example:

9
42|361
- 378

When the estimated quotient is too great, the student
must try a quotient that is less.

The student must learn that an estimated quotient
is too small if the remainder is greater than the di-
visor. For example:

4

18[89

72

19
The remainder must be less than the divisor. When
the estimated quotient is too small, the student must
try a quotient that is more. Note how potentially

confusing this type of problem is. Without careful
explanations, students arelikely to become confused.



The evaluation of the rate of introduction for 2-
digit divisor problems is based on an analysis of the
various types of problems related to estimated quo-
tients that are too large or too small. The four major
types of problems are:

* 1-digit answer in which the estimating proce-

dure produced the correct quotient.

¢ 1-digit answer in which the estimating proce-

dure produced an incorrect quotient.

¢ 2-digit answer in which the estimating proce-

dure produced a correct quotient.

» 2-digit answer in which the estimating proce-

dure produced an incorrect quotient.

The rate of introduction of skills can be inferred
from Figure 1, which shows the objectives from the
chapter on 2-digit divisorsin the ‘89 and '91 versions
of the stronger-pedagogy basal, and the objectives from
the “88 and ‘91 versions of the higher-approval basal.

Both '80s editions introduced the four types of
problems at too fast a rate for average and lower-
performing students. Unfortunately, these lessons
remained fundamentally unchanged in the 1991 edi-
tions. The most critical aspect of two-digit divisor
problems has to do with when the estimated quo-
tients are incorrect. In the 1991 version of the higher-
approval basal, two lessons (4 and 5) teach students
how to solve problems with a one-digit quotient that
is not the same as the estimated quotient, and only
one lesson (lesson 6) teaches students how to solve
problems with multi-digit answers that are not the
same as the estimated quotient.

The "89 version and also the ‘91 version of the
stronger-pedagogy basal program (see Lesson 4, Figure
1) introduced estimated quotients that are too large
and estimated quotients that are too small. This in-
struction ocurred in only one lesson,

Problems with multi-digit gquotients present new
challenges to the student. The students must work
the problem a part at a time. To do this, they must
determine which part of the problem to work first.
Sometimes the first part involves the first 2 numbers
of thedividend, e.g., 24 | 972, and sometimes the first
3 numnbers of the dividend, e.g., 24 11483. These
problems with 2-digit quotients can be especially
cumbersome when the estimated quotients are wrong
and the students have to change the quotients.

Both the ‘89 edition and the '91 edition of the
stronger-pedagogy basal introduced problems with 2-
digit quotients and problems with 3-digit quotients
inthe samelesson. Some problems in that lesson had
estimated quotients that proved to be incorrect.

The "88 version of the higher-approval basal devoted
three lessons to the introduction of problems with
multi-digit answers. The first lesson introduced
problems with 2-digit quotients. The problems were
limited to those in which the estimated quotient

proved to be correct. The second lesson introduced
problems in which an estimated quotient had to be
changed, and the third lesson introduced problems
with 3-digit quotients.

In the ‘91 version of the higher-approval basal, the
lesson which introduces problems with 2-digit quo-
tients remains similar to that of the ‘89 version. The
next lesson, unlike the ‘89 version, does not teach
students to work problems with estimated quotients
that are incorrect. Instead, it introduces problems
with 3-digit answers. Even though no mention is
given in the teacher directions, 7 of the 19 problems
inthatlessonincluded estimated quotients that were
incorrect.

One of the consequences of introducing concepts
at too fast a rate is that two or more challenging
concepts end up being introduced at the same time,
causing confusion for some students. For example,
in the higher-approval basal, students are initially
taught to estimate by creating a simple division
problem, taking the first digit of the divisor and the
first two digits of the dividend; to work the problem
48 157, the students would create the problem
4 T15. All the problems in the first lesson were
designed so that thisestimatingalgorithm would yield
a correctanswer. Inthe nextlesson, the students use
the sameestimating procedure, butare introduced to
problems in which the estimated quotient will be too
bi

gln the third Iesson problems in which the esti-
mated quotient is too small are introduced in con-
junction with a new rounding algorithm. Instead of
lockingatjust thefirstdigitofthedivisor, thestudents
are told to look at the first two digitsand round to the
nearest ten. The student text page and the accompa-
nying teacher directions appear in Figure 2. As you
read the excerpt from the student text and Teacher’s
Guide, note that the first time the students apply the
new algorithm in problems, the estimate does not.
yield a correct quotient. The second time the new
algorithmisintroduced (in ExampieB), the new type
problem (i.e., estimated quotient is too small) is
presented, resulting ina potentially confusing situa-
tion for the students. The confusion results in part
from the students having to learn to apply both the
new rounding algorithm for estimating and the algo-
rithm for correcting estimates that are too small at
the same time,

The 1991 version kept the same sequence. In the
first two lessons, the students rounded by keyingjust
on the first digit of the divisor. The third lesson, the
problematlc one, was altered, though. Instead of
begin ng the lesson with an example in which
381 259 is rounded to 3125, the lesson begins this
way: 381259 is rounded to 4 125. This change elimi-
nates the confusion resulting from the introduction
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Figure 1. Objectives For Each Lesson in the 2-Digit Divisor Chapter

The Stronger-Pedagogy Basal Objectives

Lesson 1989 Version

1991 Version

1 To use basic facts and mental math to To use mental math to find the quotients of
find larger quotients. multiples of powers of 10.

2 To use multiples of 10 as divisors to find To use estimation techniques of front end digits
1-digit quotients. and compatible numbers to estimate quotients.

3 To find 1-digit quotients for 2-digit divisors. To find 1-digit quotients for 2-digit divisors.
Estimating leads to a correct answer. Estimating leads to a correct answer.

4 To change incorrect estimated quotients To change incorrect estimated quotients.

5 To use mental math to solve word problems; To divide by a 2-digit number when the
to solve word problems having more than quotient is a 2 or 3-digit quotient. Estimating
one step. sometimes leads to correct answer,

6 To divide by 2-digit divisors to find 2 and To choose an appropriate method of calculation
3-digit quotients. Estimating sometimes (paper and pencil, calculator, mental math).
leads to correct answer,

7 To divide by a 2-digit divisor to find To divide whole numbers with zeros inthe
quotients with zeros. - quotient and money notation in the dividend.

The Higher-Approval Basal Objectives
Lesson 1989 Version 1991 Version

1 Divide by a two-digit divisor to get one-digit Use mental math strategies to divide by a two-
quotient. Estimating leads to correct answer. digit divisor.

2 Correct one-digit-quotients that are to Estimate quotients by using compatible numbers.
large.

3 TRound the divisor to make a better estimate Dividebya two-digit divisor to get a one-digit
for the quotient. quotient. Estimating leads to correct answer.

4 Divide by a twd—digit divisor to get a two- Correct one-digit quotients that are too large.
digit quotient. Estimating leads to correct
answer.

5 Correct two-digit quotients that are too Round the divisor to make better estimates
small. for quotients.

6 Solve problems by interpreting remainders. Divide by a two-digit divisor to get a two- digit
quotient. Estimating sometimes leads to correct
answer.

7 Divide by a two-digit divisor to get a three- Solve problems by interpreting remainders

digit quotient.

] Divide by a two-digit divisor to geta Divide by a two-digit divisor to get a three-digit
quotient with one or'two zeros. quotient.

g Solve problems by choosing addition, Divide by a two-digi; divisor to get a quotient
subtraction, multiplication, or division. with one or two Zeros.

10 Find missing factors. Solve problems by choosing addition,

subtraction, multiplication, or division.
az RerorRMING MaTH CURRICULUM



of an algorithm that seems less efficient than the old
strategy. However, students still must think about
adopting a new rounding algorithm and at the same
time learn to compare the remainder to the divisor,
seeing if it is less than the divisor,

Coherence

Coherence refers to how the lessons in a chapter
interrelate. What is taught in the first lesson of a
chapter should prepare students for what comes
later. Both the '91 versions of the basals place more
emphasis on estimation to determine the reasonable-
ness of answers, a worthwhile change from the '80s
edition. Unfortunately, the manner in which the
estimation is taught may make learning to work 2-
digit divisor problems even more difficult. A lesson
has been added at the beginning of the respective
chapters that teaches students to use “compatible”
numbers to estimate the answers to problems.

Compatible numbers are numbers that enable a
student to divide and end up with either a single-
digit or a multi-digit quotient in which all the num-
bers except the first digit are zeros. Here's an ex-
ample of problems with compatible numbers: 7,200
+ 80, 330 + 70, 9,000 + 300.

In working with compatible numbers, the stu-
dents are taught to round the dividend so that the
quotient will end with zeros. To estimate 821634,
using compatible numbers, the students would
change the problem to 80! 640. To estimate
831 3,179, the students would change the problem to
8013,200,and to estimate 28 | 8,905, the students would
change the problem to 30T 9000.

Introducing the estimating skill using compatible
numbers at the beginning of the chapter may result

in confusion for students when they apply the algo-
rithm for calculating the exact quotient, In the calcu-
lation algorithm, the student always tries to find the
multiple just smaller than thedividend. Forexample,
to divide 317144, the student would round off and
figure 3714 to get an estimated quotient of 4. How-
ever, using compatible numbers, the students would
round to 301150 to get an estimated quotient of 5.

The potential problem can be illustrated more
specifically by examining the ‘91 version of the
stranger-pedagogy basal. In the first lesson, students
use mental math to find quotients of multiples of 10,
such as 160 + 80 and 2700 + 30. The second lesson
teaches students to use compatible numbers to find
1-digit quotients. The problems students are to work
all have tensnumbers as the divisor. The student text
presents a model:

70 | 375 < The compatible numbers 7 and 35

help you estimate the quotient.

All the problems the students are to work are written
so that the estimated quotient can be found by mak-
ing the first 2-digits of the dividend less to create a
compatible number. In the example above, students
change 375 into 35. To figure the estimated quotient
for 401218, the student writes 4120.

Coherence problemsbeginin thenextlesson, which
introduces the calculation algorithm. The lesson
begins with a review exercise in which the students
are to estimate the quotient to a set of 15 problems.
The problems appear in the “"Quick Review” box that
follows. Note that in 12 of the 15 problems, the
students mustusea compatible number thatislarger
than the dividend. For example, to estimate the

Figure 2. Making Better Estimates in Division

Student Material Teacher Directions
A. Find 259 + 38, B. Find 198 + 28, ,
Using the pages
8 Divide. 6 Divide. Teach. Point out that in Ex-
38/259 TNk How many 3s in 257 8 28(198 HNK 28 rounds to 30, ample A, using the first digit of
How many 3sin 197 6 thedijvisor to estimate the quo-
tient results in an estimate that
B Multiply. 6  Multiply. - :
38[259 304 ispgreater than 259, 28198 Subtract and compare. lrzl:l?;u} ee difi’;grla;;kia:
304  so 8is too big. : 168 30_ is greater than 28, so more ac%:urate cstimate pos‘—
30 6istoo small. sible. In Example B, have stu-
6 R31 7 R2 dents estimate without round-
38[259  You can make a better estimate, 28[198 Try7. ing first, Then work through
228  THINK 38 rounds to 40. 196  Multiply. this example using therounded
How many 45 in 257 6 2 Subtract and compare. divisor. Peint out thatalthough
Multipiy. The remainder is 2. this estimate is too small, it is
Subtract and compare. closer to the quotient than the
The remainder is 31. estimate which was made
without rounding.
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quotient for 107 + 30, the students estimate 120 + 30
= 4. In the lesson that follows this warm-up exercise,
the calculation algorithmis introduced. Students are
expected to first estimate the quotient using compat-
ible numbers. Next, students are to use a different
estimating algorithm (finding a multiple just smailer
than the dividend). If the students use the compat-
ible number strategy to get estimated quotients in-
stead of finding a multiple just smaller than the
dividend, they will obtain an incorrect estimated
quotient for approximately one-third of the prob-
lemsin the practice set. For example, for the problem
44 7352, the compatible numbers would be 4136,
which would yield an estimated quotient of 9, which
{snot correct. Because the students have not yet been
taught how to rework incorrect estimated quotients,
the situation is likely to be frustrating for many
students.

Quick Review

Estimate the quotient.
1,.395+70 {6) 0. 714+80 (9 3. 456+50 ()
4 157+40 (&) 5 237+60 (4 6. 533490 (&)
7.817+90 (9 B 639+80 (8 9. 11830 (1
10 466+50 (9) 1L 623+70 (9) 12 218+30 (D)
13.107+30 {4 14.531+80 (7) 15 345+70 (5

In the ‘91 version of the higher-approval basal, the
entire second lesson is devoted to using compatible
numbers to estimate quotients. Students work prob-
lems in which they make the dividend larger, 498 +
49 is estimated as 500 + 50, and problems in which
they estimate by making the dividend smaller, e.g.,
251 + 39 is estimated as 240 + 40. The next lesson,
which introduces the calculation algorithm, does not
mention compatible numbers. But the third lesson,
which introduces problems where the estimated
quotientistoolarge, shows the estimating step using
compatible numbers. If; in fact, students used the
compatible number algorithm, several problems
would yield estimated quotients that are too large,
e.g., 221134 —> 201140, which yields an estimated
quotient of 7. (The correct quotient is 6.)

Clarity of Teacher Communication

The role of the teacher’'s manual is to help the
teacher explain new concepts to the students in a
clear, concise manner. When faced with a ¢class of up
to 30 students, the teacher might like to refer to
suggestions about what to say and do to ensure that
she is communicating in a clear manner that facili-
tates student understanding. Neither program pro-
vides specific suggestions.

Explanations. The 1989 version of the stronger-
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pedagogy basal relied mainly on the teacher to explain
problems that were illustrated in the student text. A
typical direction to the teacher appears below. 1t's
taken from the page on which the calculation algo-
rithm is first introduced.
Lesson Development  Driscuss each instruction box in the
steps for finding the answer. In the second step, emphasize
that rounding the divisor makes the problem like the ones in
the previous lesson. Caution shudents to be careful to mlti-
ply the quotientby the ectual divisor, ot therounded divisor.
Discuss the steps used to check the answer. Also point aut
that the answer 5 seems rensonable since 40 x 5 =200,

The 1991 the stronger-pedagogy basal took much of
the responsibility from the teacher for explaining
concepts clearly, in what appears to be the hope that
students will be able to explain the concepts to their
peers more clearly than the teacher can.

At the beginning of each unit in the ‘91 edition is
a section entitled Communication. In many of these
exercises, the teacher has the students hypothesize
how to solve a problem before the teacher actually
explains the strategy. Below is an exercise that ap-
peared before the introduction of the lesson on <ot~
recting estimates:

COMMUNICATION

Writing in Math  Write the division problems 56 1340
and 93 1450 on the chalkboard. For each problem, have
students estimate its quotient, multiply to verify the
accuracy of The estimate, and write a paragraph ex-
plaining their findings and how they would handle the
situation. [Possible answer: The estimated quotient of
the first problem will be too small and the estimated
quotient of the second preblem will be too large.]

Activities such as these may function well for
higher performing students, but for lower perform-
ers they may not function as intended. These stu-
dents need carefully controlled explanations and
active involvement.

Manipulative activities. A fundamental objec-
tive of any math program is to instill in students a
clear understanding of the events signified by a
mathematical operation. Manipulative activities
should provide a framework for understanding, but
not interfere with the teaching of the algorithm itself.
The area of manipulative activities represents the
greatest differences between programs and between
oditions. The higher-approval basal drastically re-
duced its manipulative activities while the stronger-
pedagogy basal dramatically increased its manipula-
tive activities.

In the two division chapters (1-digit divisor and 2-
digit divisor problems), the stronger-pedagogy basal
(1989 version) had only one lesson in which the



students used manipulative material. In that lesson,
the students worked with play money and had to
divide a given amount among a specified number of
students. The exercise focused on place value. The
problem required the students to trade in a hundred
for 10 tens or a ten for 10 ones to divide the money.
A model of how to divide money was given: “For 3
into 432, we give a hundred to each, we have a
hundred left over; so we change the hundred into 10
tens, then divide the tens,” etc. The exercises the
students were to do independently were more diffi-
cult than the model, but probably in a reasonable
range;e.g., the model showed 3 into 432, but students
were required to work independently 5 into 855and
4 into 276, both of which require the students to
change more than one 100 into tens.

The 1991 the stronger-pedagogy basal introduced a
new section in each lesson. The section entitled
Explore and Connectincluded a variety of activities,
some using calculatorsand other materials. Hereare
the activities included in the lessons in the single-
digit divisor chapter.

s Students work in groups using a map to plana
200-mile bike trip. They plan their route, then
determine the number of days the trip would
take if they traveled the same realistic number
of miles each day

e Students work in pairs with a caiculator using

repeated subtraction to work problems.

e Students work in groups using play money to

model division problems.

» Students workin groupsusing guess-and-check

strategy to determine averages.
The potential problem with these activities is that
they are very time consuming,.

There was also a significant difference between
the "89 versions of the stronger-pedagogy basal and the
'88 version of the higher-approval basal in the amount
of manipulative activities for division. In the '88
version of the higher-approval basal, three lessons (two
for 1-digitdivisor problemsand one for 2-digit divisor
problems), had the students work with place value
units (hundreds, tens, and ones), to solve division
problems, The students work a total of 47 problems:

e 28 problems with a single-digitdivisorand a 1-

digit quotient, 9180.

e 12 problems with single-digit divisors and 2-

digit quotients, e.g., 31157. '

« 7 problems with 2-digjt divisors and single-

digit quotients, e.g., 211 171.

The students were to work problems with.

manipulatives and then to record their work using
the form of the algorithm. After working a set of
problems this way, students were to work problems
justusing thealgorithm. The Teacher's Guide wasquite
unclear as to the manner in which the teacher would

lead the students through the transfer from the use of
manipulatives to the use of the algorithm. The [ol-
lowing directions to the teacher appear for explain-

ing the model of the algorithm illustrated in the

student text:

Practice. For the example after Exercise 6, students
should recognize that 3is written in the ones place of the
quotient because there are 3 groups of 48 in 157, rather
than 3 groups of 4in 15, which wouldlead them to write
3in the tens place.

In the '91 version of the higher-approval basal, the
number of problems students are to work with
manipulativesis drastically reduced, only two prob-
lems with single-digit divisors and two problems
with 2-digit divisors are presented. More structureis
provided in the form of a worksheet that asks ques-
tions such as:

To divide 83 by 3, can 8 tens be divided into 3 groups?
How many tens will be in each group? 2

After dividing, trade 2 tens for 20 ones.

Can 23 be divided into 3 groups?

How many ones in each group? 7

Is there & remainder? Yes

After dividing, 2 ones remain.

Although manipulatives are indispensable in de-
veloping basic number concepts, the need for using
manipulatives to work complex algorithms is far less
clear. This confusicn is reflected in the positions
taken by the two basal programs in their ‘80s edition
and how each publisher revised its position in its
1991 edition.

Guided Practice

Many students need a transition between the ex-
planationgivenin the introduction and the problems
to be worked independently. In guided practice,
which occurs aftera conceptisintroduced, the teacher
asks questions that prompt appropriate student ap-
plication of the new concept (Good, Grouws, &
Ebmeier, 1983). As the students approach mastery,
teachers should decrease thelevel of prompting until
the students are functioning-independently (Faine,
Carnine, White, & Walters, 1982).

As a general rule, structure should be provided to
facilitate a student success rate of at least 70-80 per-
cent. A success rate can be calculated with this
fraction:

- Number of problems worked gorrectly
Number of problems attempted

As noted earlier, basals offer rather vague expla-
nations for introducing new concepts. After these
initial explanations and activities, students are ex-
pected to work several problems on their own'with-
out explicit guidance from the teacher. Neither the
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higher-approval basal nor the stronger-pedagogy basal
provide suggestions for conducting guided practice.
No specific wording suggested that the students
utilize the steps that are modeled in the student text.
In both versions of the stronger-pedagogy basal and the
higher-approval basal, the major part of the guided
practice section of the Teacher’'s Guide alerted the
teacher to common errors the students might make.

Practice

Initial practice. Practice that appears immedi-
ately after the introduction of a concept should be
coordinated with the types of problems presented in
teacher-directed activities. As a general rule, the
teaching in structured exercises should prepare the
students for the problems they'll encounter in inde-
pendent work. Textbook authors can put in prob-
lems that teststudents’ generalization, but the gener-
alization should be reasonable. _

Sometimes programs expect too much from the
students. For example, with 2-digit divisor prob-
lems, some problems will yield estimated quotients
that may be two or three numbers from the correct
quotient (i.e., 13 [93). The 89 edition of the higher-
approval basalhad alessonin which this typeappeared
without any teacher guidance. Remember that the
higher-approval basal initially teaches students to es-
timate by looking only at the first digit of thedivisor,
e.g, for 301244, the estimation problem is 3174
Using this estimation algorithm, the students will
encounter several problems, 381278, 13193,
397248, and 291203, that yield estimated quotients
that are 2 or 3 numbers too great. The ‘91 version is
the same, except the Teacher's Guide does contain this
direction to the teacher: “Stress that students must
sometimes try several digits in the quotient before
they find one that works” (p. 156).

Later practice. Distributed practice enables a stu-
dent to becomne fluent in working problems. After
students are able to work a new type problem with
relative ease, they might benefit from discriminated
practice in which problems of the recently intro-
duced typeareintegrated with problemsof previously
taught types. For example, after students learn to
work 2-digit divisor problems, they might become
confused about where to write the first digit of the
quotient in 1-digit divisor problems. Neither pro-
gram provides any mixed practice sets that include 2-
digit and 1-digit divisor problems. Theonly activi-
ties that provided practice in this discrimination
were story-problems which included only one of
each type problem.

46 REFORMING MATH CURRICUILUM

Review

Review is the means by which students receive the
practice needed to retain what they have learned.
Review can take the form of computational prob-
lems, or the problems can be integrated as a compo-
nent within a more complex context—for example, a
story problem that can be solved by dividing witha
2-digit divisor.

The review sequences in both programs would be
inadequate for many average and lower-performing
students. Inthe’91 versionof the higher-approval basal,
a chapter on geometry follows the chapter on 2-digit
divisor problems. The Teacher’s Guide for the geom-
etry chapter makes no reference to 2-digit divisor
problems. The chapter following geometry presents
addition and subtraction of decimals. This chapter
also contains no instructions to the teacher for re-
viewing 2-digit divisor problems. The first reference
to 2-divisor problems appears in a cumulative re-
view test which appears at the end of the addition
and subtraction of decimal chapters—a point which
would probably occur several weeksafter thestudents
had finished the 2-digit divisor chapter. One prob-
lem that tests the students’ knowledge of the 2-digit
divisor algorithm appears in the test. The problem
tested,

200 R1
16{3201

is a difficult type, and theremediation spelled outin
the Guide directs the teacher only to the page where
difficult-type problems like this with zeros in the
quotient are taught. The first massed review of 2-
digit divisor problemns occurs in the next chapter on
a page that appears 78 pages after the end of the
divisor chapter.

In the ‘91 edition of the stronger-pedagogy basal, a
chapter on fractions follows the 2-digit divisor chap-
ter. Only two problems (both story problems in the
middle of the chapter) review 2-digit divisor prob-
lems. A cumulative review test at the end of the
chapter doesinclude items testing the 2-digitdivisor
algorithm.

Conclusion

In an ideal world, each revision of a program
would improve its suggestions where students en-
countered difficulty in the prior edition. Each revi-
sion would result in a more effective instructional
tool. Unfortunately, the 1991 versions of these
programs did not make changes that would signifi-
cantly ameliorate the major short comings we found
‘n the 1980's editions. Three lessons will not give



many students enough time to learn the calculation
algorithm. Moreover, the rapid introduction of con-
cepts results in a new rounding algorithm and a new
problem type (i.e., estimated quotient is too small)
being introduced at the same time. In fact, the 91
version of the higher-approval basal is in such a rush
that 19 problems with incorrect estimated quotients
were introduced before students were taught how to
work that type of problem.

Besides the difficulties caused by the rapid rate of
introduction, many students will be confused by
contradictory algorithms. For example, with the
compatible-number algorithm, students oftenround
up whereas with thecalculation algorithm, they round
down. The new editions of the stronger-pedagogy
basal avoids confusing teacher explanations by hav-
ing the students do the explaining. Finally, the
programs lack guided practice and adequatereview.

The 1991 the higher-approval basal did make some
improvements compared to its 1989 edition. Activi-
ties from the ‘89 edition that seemed tobe potentially
confusing or too time consuming have been elimi-
nated orrevised. On theotherhand, the 1991 stronger-
pedagogy basal reflects changes from the 1989 pro-
gram which could make it a less effective tool, espe-
cially for the less-experienced teacher.

As noted in the introduction, our interest was in
fundamental aspects of pedagogy, not the new NCTM
Standards in and of themselves. The 91 editionof the
stronger-pedagogy basal added many activities to re-
flect the new NCTM Standards. The higher-approval
basal also has many activities thatare consistent with
the Standards. The central point, however, is that if
students are not able to divide, the failure they expe-
rience will not lead them to value mathematics, rea-
son mathematically, communicate mathematics, or
solve problems. ¢
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In the past ten years, some meta-analyses (e.g.,
Sowell, 1989) have provided minimal support for
using manipulative materials in elementary school
mathematics. For the most part, the studiesincluded
" in those reviews compared instruction with

manipulatives and instruction without manip-
ulatives.

Research by Resnick and Omanson (1987) sug-
gests that mathematical proficiency with concrete
materials does not result in the same proficiency
with symbolic representations. In fact, the results
reported by Resnick and Omanson would indicate
an inverse relationship: greater proficiency inusing
concrete representation was paired with weaker pro-
ficiency in using a symbolic representation, and vice
versa..

It would appear that instruction may be required

“to ensure that both procedural and conceptual
knowledgearedeveloped. Whatis not clear is which
type of instruction and which representations best
promote this relationship (Baroody, 1989).

Resnick and Omanson (1987) allude to a possible
solution to this dilemma in their concluding com-
ments. They question whether blocks or
manipulatives play a crucial role in learning bor-
rowing insubtraction and suggest that “perhapsany
discussion of quantities manipulated in written
arithmetic, without any reference to the block ana-
logue, could be just as successful in teaching the

principles that underlie written instruction” (p.90). ’

Alternatively other representations could be used
(e.g., pictorial representations and ‘symbolic repre-
sentations). Lesh et al. (1987) take this idea one step
further and suggest that perhaps a combination of
representations could be used to develop concepts
and procedures in mathermatics.

The primary focus of the present stady wason the
officient and effective development of procedural
and conceptual mathematics knowledge. Two rep-
resentational modes—concrete and symbolic—were
used to teach two-digit minus two-digit subtraction
with borrowing,. :

The strategies were drawn from two commercial
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texts. The first strategy, labelled the manipulative
strategy, was adapted from the mathematics series
Explorations (Addison-Wesley, 1988) which also in-
cludes the very popular Math Their Way. This strat-
egy ddvocates the use of a variety of concrete objects
with which students first explore the concept of
borrowing and thenare guided by the teacher through
the steps for solving subtraction problemis. Students
are explicitly shown how problems are worked us-
ing the manipulatives and how this transfers to a
symbelic form. For example, students “see” how a
ten is borrowed and decompaosed into ten ones. This
visual image is later linked to.a symbolic represen-
tation of the problem as students work the problem
with the concrete material and record their workina
symbolic mode.

The second strategy was developed from the
mathematics series Connecting Mathematics Concepts
(Engelmann & Carnine, 1991). This strategy, la-
belled the algorithm strategy, required students to
complete all workina written symbolic representa-
tion, Prior tolearning how to work problems, students
were taught the conceptual elements that underlie
therules used in borrowing, For example, the teacher
modelled, then students practiced how to rewrite
numbers in differing expanded notation form (e.g.,
48 equals 40 plus 8, and 30 plus 18). Students then
used this rewriting rule to work subtraction prob-
Jems requiring borrowing.

Each student received instruction using both
strategies. The order in which strategies were taught
was counter balanced: (1) either the manipulative
strategy followed by the algorithm strategy; or (2)
the algorithm strategy followed by the manipulative
strategy.” Prior to strategy teaching, students were
taught how to compute minus-9 facts in a manner
consistent with the first strategy they would learn,
i.e., the manipulative group learned to compute mi-
nus-9 factsusing manipulatives, while the algorithm
group learned an algorithm for computing minus-9
facts. '

Throughout the study, data were collected to ad-
dress the following issues:

o Theefficiencyofinstructionas measured by the

armnount of instructional time.

« The effectiveness of instruction asmea sured by

posttest and maintenance scores. '

o The conceptual understanding students at-

tained, as indicated by interviews with stu-
dents before, during, and after the study.



Method
Subjects and Setting

Twenty-six students in two second and third com-
posite grades from a school in the Pacific Northwest
participated in the study. The school, designated a
Chapter 1 school, was situated in a low socioeco-
nomic neighborhood.

Students in each of two classrooms were first
divided into two groups: (1) Chapter 1 students and
(2) special education students. Each group was in
turn divided into female and male subgroups. Using
the mathematics subtest of the California Test of Basic
Skills, percentile differences between groups were
analyzed using a one-way analysis of variance. No
significant differences were found (p> .44). Groups
were then randomly assigned to an instructional
group: Manipulatives first (MN) or algorithrm first
(AL).

Table 1. Breakdown of Students Included in the
Final Analysis by Gender and Type of
Educational Services Received

Group
Subject Manipulatives First Algorithm
(MN) (AL}
Male 5 8
Female B8 5
Total 13 13
Regular Education* 11 10
Special Education 1 2
Speech & Hearing 1 1

* All students received Chapter 1 services,

Measures

Subtraction problems screening test. The sub-
traction problems screening test consisted of eight
subtraction problems; six problems required bor-
rowing, two did not. Students who correctly an-
swered five or more subtraction problems were not
included in the final data analysis. This decision was
corroborated through student interviews prior to
treatment.

Place-value preskill assessment and instruction.
The place-value preskill assessment and instruction
focused on student understanding of place-value
involving tens and ones. Students were presented
randomly selected numbers represented with con-
crete objects (Dienes blocks that use color and size to
represent place values). They were asked to count
and state the quantity represented by the concrete
objects. Students were also asked questions de-
signed to assess their understanding of place-value
of written numerals. Students who made errors

received instruction until they correctly answered
stmilar items.

Subtraction probes. Subtraction probes were
given each day during the study. Each probe con-
sisted of six subtraction problems, five requiring
borrowing and one not,

Student interviews. A qualitative measure,
adapted from the informal study conducted by
Resnick and Omanson (1987), was used to capture
student understanding of concrete and symbolic
representations. Its focus was the students’ concep-
tual understanding of borrowing. This qualitative
measure was conducted three times: (1) prior to the
study as part of the screening process, (2) at the
conclusion of Phase 1, and (3) at the conclusion of
Phase 2.

Students worked one problem with a symbolic
representation and one with a manipulative repre-
sentation. What the student said was recorded on
audio-tape, and physical actions were noted on a
checklistby the tester. Atspecific points when work-
ing the problems, the observer asked the student a
question that required demonstration of conceptual
knowledge to justify a particular procedural action.

Consumer satisfaction. Atthe completion of each
phase, students were interviewed as to how they felt
when using the representation in the immediately
preceding instruction. Students were asked what
they thought was easy and what was difficult about
the representation. At the end of the study, students
were also asked which representation they. liked
better, why they liked it, and what they did not like
about the other representation.

Lesson duration. All lessons were timed by the
teacher. The teacher commenced timing with a
stopwatch when thelesson began. Timingcontinued
until the teacher completed that day’s instruction.

Twenty-four lessons out of the ninety lessons
constructed for this study were observed. The data
on duration of lessons was compared with the times
noted by the teacher conducting the lesson. Agree-
ments, defined as the two times within 15 seconds of
each other, were found on 21 of the 24 lessons ob-
served.

The three disagreements were made in the first
five lessons of Phase 1. Checks on lesson duration
timings were maintained throughout the study to
ensure that discrepancies did not recur. At the con-
clusion of the study, the average discrepancy in
lesson duration timings was 8.25 seconds per lesson.,

Posttest. The day after the completion of the
intervention, each student was individually admin-
istered a Posttest that involved completing five sub-
traction problems using a concrete representation
{four problems required borrowing} and five prob-
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lems using a symbolic representation (four problems
required borrowing). The order in which the repre-
sentations were presented was counter-balanced
within each group.

Maintenance Test. A Maintenance Test was given
three weeks after the conclusion of the intervention.
The Maintenance Test was constructed and admin-
istered in the same manner as the Posttest, except the
Maintenance Test was counterbalanced in relation to
the order from the Posttest.

Procedures

The study was conducted within the regular se-
quence of the mathematics curriculum. Instruction
was provided by graduate students with teaching
experience.

Symbolicrepresentationin Phase 1. Students were
taughtin small groups of three to five. Beforelearning

toborrow, students were pretaught three component .

skills of the strategy: place-valueaddition, rewriting
for borrowing, and deciding when to borrow. The
teaching began with the teacher directly modeling a
componentskill. Teacher involvement was gradually
faded uniil students were able to perform the three
component skills independently. Borrowing was
then introduced. (Details of the intervention can be
found in Evans, 1990.)

The mastery criterion for students using the the
symbolic strategy was correctly answering four out
of five subtraction problems involving borrowing on
lesson probes for two consecutive days. On at least
one of these two days, students had to answer the
nonborrowing probe correctly. (Students were given
a 10-minute time limit in which to complete the six
problems to accommodate school administrative
COTICEIns.}

Concrete representation in Phase 1. The concrete

representation strategy wasdrawn from Explorations
(Addison-Wesley, 1987). Theauthorsof the program
state:
4 work with concrete materials is critical to con-
cept development” (p. 285). The instructional strat-
egy used comprised four steps. (Details of the inter-
vention can be found in Evans, 1990).

Step 1. When to share

Step 2. Breaking up and taking away

Step 3. Working together (or guided practice}

Step 4. Finishing the story (o7 independent work)

As students completed the lesson probes, the in-
structor monitored student work to ensure that the
concrete materials were being used correctly. Stu-
dents did not attain mastery unless they were able to
display evidence that the manipulatives were being
used correctly. The mastery criterion for students
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using the concrete representation was the same as
the set for the symbolic representation.

Contrasting representation in Phase 2. After
reaching criterion with the first represenfation in
Phase 1, the students in a group were taught to solve
borrowing problems using the other representation
(Phase 2). The MN group was taught to use the
symbolicrepresentation but was allowed to use ones
counters to answer fact problems. The AL group was
taught to use a concrete representation exactly as
was given to the MN group in Phase 1.

After meeting criteria in Phase 2, students com-
pleted the posttest and the consumer satisfaction
interview. Three weeks later, students completed
the maintenance tests. The interviews to assess
student understanding of the two representations
were conducted prior to the intervention and after
each phase. ‘

Daily decisions and record keeping. Students who
attained criterion in Phase 1 did not participate in
instruction for the next lesson, but engaged in other
independent work. Independent work consisted of
material that was not related to subtraction, but had
been introduced in previous math lessons. Lesson
duration was not recorded for these students. How-
ever, instructional probes continued to be given to
the students on each day of instruction. Failure to
maintain criterion on two consecutive days required
students to return to the intervention and attain
criterion again. , _

Fidelity of instruction. Instruction wasconducted
by three graduate students who worked fromscripted
lesson plans. Instructors were coached in the ap-
propriate use of the lesson plans, which were prac-
ticed until instructors presented them accuratelyand
efficiently. During the study, the three instructors
were rotated daily to prevent any significant effects
due to the instructor. The observer who checked
lesson duration also monitored fidelity of imple-
mentation. A checklist of teacher behaviors was
used to check teacher adherence to the lesson plans,
pacing of the lesson, and conformity to the time
schedule. This check was conducted daily until no
violations were found in implementation.

Results
Maintenance and Posttest Results

Procedural proficiency with the concrete repre-
sentation. Posttest and Maintenance Test data for
each group for solving subtraction problems requir-
ing borrowing with a concrete representation are
shown in Table 2. The differences between the MN
and AL groups were not significant.



Table 2. Mean and Standard Deviation for Posttest and Maintenance Test
Using Concrete Representations

effects to determine what
contributed to this interac-

tion. The MN and AL
groups differed signifi-
cantly for Phase 1, F (1, 48)

Posttest Maintenance Test
Group N M 5D N M 5D
Manipluatives First (MN) 13 323 216 12 275 222
AlgorithmFirst (AL) 13 354 185 12% 3.25 1.48

= 3.67, p < .05, but this sig-
nificant difference was not
found in Phase 2. This re-

*One student left schoo] between the posttest and maintenance test

sult suggests that learning

Table 3. Mean and Standard Deviation for Posttest and Maintenance Test
Using Symbolic Representation

to borrow first with a sym-
bolic representation leads
to more efficient learning

than beginning witha con-
crete representation.

Posttest Maintenance Test
Group N M sD N M  sD
Manipluatives First (MN) 13 277 224 12 142  1.73
AlgorithmFirst (AL) 13 269 2.36 12¢ 275 226

A second significant
simple main effect occurred
in relation to the order in

*One student left school between the posttest and maintenance test

which groups learned to
borrow using concrete and

Procedural proficiency with symbolic representa-
tion. Procedural proficiency in using a symbolic
representation was evaluated by having students
complete problems using paper and pencil and with-
out the use of aids, e.g., number line or counters. The
mean and standard deviation for each test by group
is shown in Table 3. The differences were not sig-
nificant.

Lesson Duration

A summary of data for length of instruction for
Phase 1 and Phase 2, and the combined time for both
of these phases, is shown in Table 4. The mean
duration of instruction for each group is also shown
in Figure 1. '

A two-way repeated-measure ANOVA was con-
ducted, with Phase of Instruction and Treatment
groupastheindependent variables, and the duration
of instruction as the dependent variable. The result
of this analysis indicates that there is a statistically
significant interaction between Group and Phase, F
(1,48) = 6.54, p < .03.

An analysis was conducted of the simple main

symbolic representations,

F(1,48)=6.56,p <.05. These results showed that the
time required to learn to borrow using a concrete
representation first (Phase 1) wassignificantly greater
than the time for learning the symbolic representa-
tion next (Phase 2). In contrast, when learning to
borrow using a symbolic representation was fol-
lowed by using a concrete representation, there was
no statisticaily significant difference in the duration
of instruction for the two phases.

Understanding of Symbolic Representation

Categorical data included actions that could be
rated as occurring or not occurring, such as students
crossed out the tens digit in the minuend and wrote
the number that was one less. (The categories are
shown in the left column of Table 5.)

Categorical data were rated in three ways. Stu-
dents who failed to complete a particular category or
who showed no evidence of completing a category
were rated as “Don’t Know” or “DK.” A response
wasrecorded “yes” for each student who completed
acategory asdescribed, while a response thatdid not

Table 4. Mean Standard Deviation, and Range for Duration
of Lessons in Phase 1, Phase 2, and Total for Phase 1 and

Figure 1. Mean Duration of Instruction
to Criterion for Phases 1 and 2

Phase 2
Group Phase 1 Phase 2 Phase 1+ Phase 2 c 260 O MN st
MN: M 24281 169.30 412.10 £ © A
SD 5021 50.23 83.46 S
Range  (171.55-315.98) (67.54-234.80  (255.71-508.70) o
AL: M 15361 183.85 337.46 i o
SO 52.88 112.70 162.81 140
Range  (86.18-267.33)  (29.03-340.68) (115.22-608.02) — —
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match the description was marked as “No.” The
percents for each category after Phase 1 and after
Phase 2 appear in Table 5.

After Phase 1. In the Interview, conducted at the
conclusion of Phase 1, 69.2% (9 out of 13) of the AL
students correctly answered the specified problem.
This percentage of correct answers was a noticeable
improvement from the screening interview, where
only one student from the AL group was able to
respond correctly. The improvement was not as
clear for students in the MN group who had just
completed instruction using a concrete representa-
tion. Correct answers were attained by 46.2% (6 out
of 13} of students in the MN group. The student from
the MN group who had answered the problem cor-
rectly in the screening interview was unable to an-
swer the problem after Phase 1. She again tried to
count from the subtrahend to the minuend but be-
came confused. In an attempt to obtain the correct
answer she asked on more than one occasion to use
the blocks. Her final response was that it could not
be done without blocks.

Most students no longer inverted the numerals in

the ones column when working the problem after
Phase 1. It would appear that in learning to borrow,
through a symbolic or concrete representation, the
students learned to take the subtrahend from the
minuend.

Although differences between groups in Inter-
view 1 were not great, the AL group tended to score
higher than the MN group in all categories. It ap-
peared that a majority of MN students were unable
to transfer what they had learned with the concrete
representations to the symbolic form.

Qualitative comments pertaining to the process of
borrowing were more straightforward with the AL
group, which had just learned the symbolic strategy.
The question “why did you take one from [the tens]
column and put it [in the ones column]” brought an
almost unanimous response from the students that
“the big number was not on the top.”

MN students had greater difficulty answering the
same question. Only 30.7% of MN students bor-
rowed, butnone wasable to explain why. Allbutone
of the 30.7% of MN students were able to complete
the problem correctly. The one student who re-

Table 5. Categorical Data from Interviews on Symbolic
Representation After Phase 1 and After Phase 2.

sponded incorrectly madea mistake with
the fact calculation in the tens column.
Another 23% of MN students stated that

MN AL they could not take nine away from two.

Three of the seven MN students who

Category Phasel Phase2 | Phasel Phase2 calculated an incorrect answer were
Startsproblem  Yes | 769% 100% | 100%  100%  asked to work the same problem using
in ones column No 15.49 0% 0% 0% the Dienes blocks. Two students calcu-
DK 7.7% 0% 0% 0% lated thecorrect answer using the Dienes

blocks, while the third made a counting

Borrows a ten Yes 61.5% 69.2% 84.6% 769%  error with the ones blocks, and was off
No 23.1% 23.1% 15.4% 7.7% by “one” in his answer. After working

DK | 154% 7.7% 0% 154%  the problem with the concrete represen-

Indicates 10has Yes | 61.5%  53.8% | B846%  76.9% tation,studentswereasked to compare
beenborrowed No | 231%  23.1% | 154%  23.1% theiranswer to the one they had caleu-
DK 15.4% 23.1% 0% 0% lated using the symbolic representation.

Each student recognized they had cal-

Indicates Yes | 69.2%  76.9% | B4.6% 100% culated answers that were not the same.
borrowed 10is  No 154%  231% | 154% 0%  When asked which answer was correct,
placedinones DK 154% 0% 0% 0% all three emphatically indicated the an-
Ones: minuend  Yes | 69.2%  7689%| 84.6% 100%  Swer worked with blocks. The reason
minus No 15.4% 23.1% 15.4% 0% given was that “you can’t work these
subtrahend DK 15.4% 0% 0% 0% problems without the blocks.” One stu-
dent went further and stated, “You can’t

Tens: minuend Yes 84.6% 100% 100% 100% change the numbers (bOI’TOW) without
minus No 0% 0% 0% 0%  theblocks....” These responses sug-
subtrahend DK-| 154% 0% 0% 0% gested thatstudents were unabletomake
Correct Yes 46.2% 38.5% 69.2% 69.2% thelink between the concrete and sym-
Answer No 538% - 615% 30.8% 30.8% bolic representations. Specifically, one

DK = Don't Know
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student verbalized his inability to “sec”
borrowing a ten with blocks when using
a symbolic representation.




After Phase 2. The categorical data after Phase 2,
shown in Table 5, reveal several trends. The AL
group appeared to perform slightly better in all
categories than the MN group. Except for three
categories (“borrows a ten,” “indicates that 10 has
been borrowed,” and “correct answer”), all AL stu-
dents were observed to have performed thedescribed
behavior. First, 76.9% of students in the AL group
showed that they took a ten away from the tens
column. The same ten students then indicated that
the ones column increased by ten ones. All but one
of these ten students who had borrowed a ten and
increased the number of ones by ten completed the
problem correctly; the one incorrect computation
was the resuit of a fact error in the ones column.

The MN group worked the problem after Phase 2
in a similar fashion, but at a level slightly below that
of the AL group. Of the 69.7% of MN students who
borrowed a ten, all but one showed this by rewriting
the ones numeral. However, only a third completed
the problem correctly. Fifty percent of MN students
who borrowed and rewrote the ones numeral made
a fact error in the ones column (i.e., all wrote that 16
minus 9 equals 6).

Students’ understanding of why they had bor-
rowed varied from group to group. Forty-six percent
of the students in the AL group stated that they had
borrowed because they could not take the subtrahend
from the minuend. Only 23% of MN students ver-
balized this same response.

While students in both groups showed evidence
ofborrowing (e.g., writing a one next to the numeral
in the ones column, or rewriting the minuend with a
number 10or larger), students were unable to always
state the place-value of the one they borrowed. In the
AL group 39% of the students said it wasa “ten.” The
response given by 31% (4 of 13) of the MN students
was “16.” Two other MN students were able to
isolate the place value of the one and say it was a
“ten.”

The algorithm “bug” of inverting the ones digits
instead of borrowing was not apparent after Phase 2.
No AL students exhibited this behavior. The inver-
sion of the subtrahend and minuend in the ones
column was observed for 30.1% of MN students.
This result may indicate that students who first re-
ceived instruction using a concrete representation
followed by symbolic representation still retained
‘this bug, whereas students who received instruction
using a symbolic representation then a more con-
crete representation were less likely to retain this
bug.

Summary of symbolic understanding. In com-
parison to the screening interview, both groups of
students demonstrated a substantial increase in abil-
ity to borrow after training. The MN group did not

exhibit the behavior of borrowing a ten symbolically
as frequently as the AL group, but the number of MN
students showing this behavior was still consider-
able. The MN students were not able, however, to
explain their work as clearly as the AL studentsand
made numerous fact errors in completing the prob-
lem. It wasapparent that MN students relied heavily
on the use of concrete objects to work basic facts.

The results after Phase 2 showed that 62% of the
AL students were able to correctly complete the
symbolic problem while only about halfas many MN
students correctly completed the problem. The
amount of understanding that was verbalized var-
led, with the AL group showing more evidence of
conceptual understandingand proficiencyinsolving
problems symbolically.

Understanding of Concrete Representation

After Phase 1. The results are summarized in
Table 6. All MN students read the problem and
represented theminuend with Dienesblockscorrectly.
All students traded a ten for ten ones, and were able
to verbalize that they made this trade because they
did not have enough ones to take away 9. A correct
answer was computed by 92.3% of MN students. The
one incorrect response was by a student who bor-
rowed a ten for ten ones, but wasunable to takeaway
the correctamount (i.e., she was unable to take away
any blocks as she appeared not to know what to do).

In contrast to the MN group after Phase 1, stu-
dents in the AL group were unable to co mplete many
categories for borrowing with concrete objects. Al-
though92% ofthe AL students wereable to represent
the minuend with concrete objects and did notinvert
the minuend and subtrahend in the ones column,
only 15% showed that they borrowed a ten to obtain
ten ones. Examination of where students began
working the problems showed that only 15% of the
AL students began in the ones column.

Students who began in the tens column took the
correct number of tens away, but when faced with
taking nine ones away, they invented their own
solution for coping with an insufficient number of
ones. These students took another ten away and
placed a one from the reserve pilein the ones column.
This gave the students the correct answer, but stu-
dents were notaware that they had not conserved the
original amount in the minuend.

A few AL students who responded incorrectly
when using the concrete representation were asked
to work the same problem using a symbolic repre-
sentation. Students who calculated a correctanswer
were asked to compare their answer to the answer
obtained with manipulatives and explain the differ-
ent answers. Some students stated that “you can’t
borrow using blocks,” while others stated that they
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fAanipulatives—Continued

srrowed while using the symbolic representation
ut did not when using the concrete representation.
.few students who were asked whether you could
orrow using blocks said “yes,” but did not know
ow this could be achieved using the blocks. These
:sponses appear to indicate that students who
varned to use a symbolic representation found it
ifficult to link this knowledge to the use of Dienes
locks.

After Phase 2. After Phase 2 most students were
ble to borrow correctly. The majority of students
-aded a ten for ten ones (MN group 92.3% and AL
roup 100%). One MN student placed ten onesin the
nes column, but failed to conserve the original
uantity by removing a ten.

No evidence of inverting the minuend and-sub-
rahend was evident by any students after Phase 2.
‘orrect answers were calculated by 61.5% of the MN
tudents and 84.6% of the AL students.

Summary of concrete understanding. Phase 1
sroduced a dramatic increase in the number of stu-
lents in the MN group who could complete the
sroblem correctly, as well as a fair understanding of
he concepts involved. The AL group, however, did
ot show the same breadth of procedural knowl-

edge. They were aware that they had to borrow but
could not connect or link the conceptual understand-
ing learned using a symbolic representation with a
concrete representation.

For the MN group, procedural knowledge after
Phase 2 was comparable to after Phase 1; however
only 62% of students were able to calculate the cor-
rect answer, as compared to 92% after Phase 1. In
contrast, the AL group showed a large increase in
conceptual and procedural knowledge (23% to 85%)
from Phase 1 to Phase 2. It seems that learning to
borrow using a symbolic representation, then a con-
crete representation, lead to better understanding of
the role of place value in borrowing.

Consumer Satisfaction Interviews
After Phase 1

Students in both groups appeared to enjoy using
the representation they had been introduced to in
Phase 1, Common responsesincluded: “fun,” “good,”
and that they “liked it.” For example, studentsin the
AL group enjoyed rewriting numbers and crossing
them out.

Few specific comments were made about what

- was hard, or wasnot liked. The majority of students

Table 6. Categorical Data from Interviews on Concrete
Representation after Phase 1 and Phase 2.

in both groups said that nothing was
hard. The few negative comments in-
cluded “scared because they didn’t

MN AL know how to do it,” “confused,” “ner-
A vous,” and “strange.” Several students
_ategory Phasel Phase2 |Phasel TPhase2 (12.5%) expresse dgthat when they first
{eads the Yes | 100% 100% 100% 100% started to learn to borrow it was hard,
>roblem No 0% 0% 0% 0% but that they soon found it easier when
shows concrete  Yes | 100% 100% 92.3% 100% they were successful at solving prob-
epresentation No | 0% 0% 77% 0% @ lems
tarts in the ones Yes | 92.3%  92.3% | 154%  84.6% AfterPhase2
solumn No 7.7% 7.7% | 84.6%  144% Students did not appear to express
DK 0% 0% 0% 0% any dislike of the second representa-
fradesaten for Yes | 100%  846% | 154%  saew fon: Comments of ffine” fiked i
en ones No 0% 154% | 61.5%  144% Bood and "excited” were given in
DK 0% 0% 93.1% 0% response to how they felt. Negative
comments were also recorded. One AL
Ones: minuend  Yes 92.3% 84.6% 15.4% 100% student stated that he “hated” working
minus No 0% 15.4% 61.5% 0% with concrete objects as it was slower
subtrahend DK 7.7% 0% 23.1% 0% than working the symbolic representa-
Tensiminuend  Yes | 925%  923% | 615% 100%  bom One MM student said it was too
minus No 0% 7 70, 7 7o 0% ard using the symbohc representation,
subtrahend DK 7 7% 0% 30.8% 0% and she would like to use blocks all the
: : time. When students were asked to
Correct answer  Yes 92.3% 61.5% 23.1% 84.6%  compare the two representations they
No 7.7% 38.5% 76.9% 14.4% used, students in each group gave what
DK 0% 0% 0% 0% appeared to be contrasting responses.

DK = Don’t Know

54 REFORMING Marh CURRICULUM

The student preferences are summa-




rized in Table 7. Eighty-five percent of the students
in the AL group strongly favored using symbolic
representations. Reasons given were that using a
symbolic representation was faster and more fiin.
The one student who responded in favor of using a
concrete representation said it was “too difficult to
remember borrowing in your head.”

Table 7. Preferences for Representations

Response MN AT
Concrete 61.5% 7.7%
Symbolic 30.8% 84.6%
Both 7.7% 0.0%
No Response 0.0% 7.7%

Sixty-two percent of MN students who learned to
- 5 a concrete representation first and then a sym-
bolic representation were in favor of using concrete
objects. They favored the use of blocks because it
was easier when “numbers were too big” and when
“you don’t have enough fingers.” Half of the 31% of
MN students who said they wanted to use symbolic
representations indicated that they did not want to
use blocks to work problems. The other MN students
indicated that they did not want to use tens and ones
blocks, but preferred fingers or counters.

No matter what representation was favored, it
wasevident that students were most concerned with
ease of use and efficiency. Only in one instance did
a student indicate that it helped him to “see” or
understand what he was doing. This observation
indicates that possibly students do not perceive con-
crete objects as being more conceptually engaging.

Conclusion and Summary

Attheend of Phase 1, students were able to calcu-
late with reasonable accuracy the subtraction prob-
lem using the representation that they had just
learned. Conceptual understanding of how and why
they borrowed was also reasonable. Transfer of this
understanding to the new representation was greater
for MN students. With manipulatives after Phase 1,
the AL group was able to demonstrate conceptual
understanding of the need to borrow, but was unable
to convert this to actions when using concrete ob-
jects.

This difference in transfer must be interpreted in
light of the following points. First, the amount of
instructional time required by the MN group to reach
criterionin Phase 1 was significantly greater than the
AL group. That is, the students in the MN group
received 89.2 minutes (58.1%) more instruction on
average than the students in the AL group. Second,
the MN group, as part of their instruction adapted
from the mathematics series Explorations (Addison-
Wesley, 1988), was taught to map the concrete repre-
sentation to a symbolic representation. Therefore,

the MN group. had had exposure to the symbolic
representation, whereas the AL group had no expoe-
sure to any concrete representations.

After both groups had received instruction with
the second representation, the results indicated that
the MN students’ performance with the symbolic
and concrete representation had not improved from
the conclusion of the first phase. In fact, one less
student was able to calculate the correct answer
using the symbolic problem. In con’trastf, the AL
group maintained their level of performahnce with
the symbolic representation, were noticeably more
proficient procedurally ‘with the concrete represen-
tation, and displayed a greater degree of conceptual
understanding, & '

This difference in procedural accuracy observed
in the interviews between the MN and AL groups,
however, was not evident in the Posttest and Main-
tenance Test, where students from both groups per-
formed at a similar level. The accuracy level was
only moderate, with the average number of correct
responses for both groups being 68% on the Posttest
and 60% on the Maintenance Test. Considering the
extensive instruction, the scores were surprisingly
low.

This study suggests that students canbe taught to
become somewhat procedurally proficient with ei-
ther representation, and that conceptual under-
standing can be developed to a similar level with
both treatments. That is, no matter what type of
representation is used, if a skill is explicitly taughtin
a meaningful way, conceptual understanding can be
promoted using that representation. Thisresult su p-
ports, in part, Resnick and Omanson’s (1987) argu-

~ment that if a symbolic or any other representation is

used meaningfully, it can achieve the same aims of
developing conceptual knowledge as is (theoreli-
cally) claimed for using concrete representations.
However, the symbolicand conerete represéntations
are not equally efficient. Instruction takes signifi-
cantly more time when initial instruction involves a
concrete representation. ¢
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 Grades 1-3
+  Emphasizesthe connectlonsamong math concepts

+  Qrganizes lessons by related strands, not single
topics

» Glves both guided and Independent practice
+ Places strong emphasis on problem solving

Important benefits for students and teachers

Connecting Math Concepts is designed to ensure that all
students {not just some) will learn higher-order thinking
and mathematics. What's more, they will apply what they
know in a variety of meaningful activities as they learn to
think and problem solve.

Develops important relationships among math concepts

The program establishes relationships among concepts
and their application. Connecting Math Concepts intro-
duces concepts at a reasonable rate and provides system-
atic, continuous review so that students learn, remember,
and integrate the concepts they are taught.

Lots of ideas for applications extensions, and manipulatlves
Suggested Application/Extension Activities are provided
in every lesson. These include problem-solving activities,
games, and cooperative learning activities. The program
incorporates suggestions for manipulative materials to
introduce, reinforce, or expand the concepts taught.

Tested materlals that really work

Connecting Math Concepts was field-tested ina variety of
classrooms across the United States. The authors carefully
reviewed teacher critiques and student performance on
every lesson and based extensive revisions on this feed-
back.

Connecting Math Concepts, Level A

Level A builds on the aspect of mathematics that is most
familiar to children—counting. Thelessons extend count-
ing to a small set of facts and uses these to teach the basics
of mathematics: addition and subtraction, their relation-
ship toeach other, and the concepts of more and less, place
value, problem solving, estimation, money, and measure-
ment.

Connecting Math Concepts, Level B

Level B teaches place value, relationships and facts of
addition and subtraction, mental arithmetic, problem
solving, measurement, money, column addition and col-
umn subtraction, geometry, muitiplication, and data col-
lection and analysis.

Sonnecting Math Concepts, Levels A, B, C

Connecting Math Concepts, Level C

In Level C, students learn a variety of problem-solving
strategies for situations involving classification, compari-
son, addition and subtraction actions, multiplication and
division, and even multistep problems. Key relationships
are developed, such as multiplication and division, divi-
sion and fractions, multiplication and addition, area and
volume. Instruction covers place value, geometry, estima-
tion, calculator use, measurement, money, and statislics.
Concepts and computation skills are aiso taught for bor-
rowing, multiplication, division, and fractions.

Authors
Siegfried Engelmann and Douglas Carnine

Components

Complete Set of Teacher Materials for each level contains
1 Teacher’s Guide, 1 Teacher Presentation Book, and a
separate Answer Key. Student Materials for Levels A and
B consist of 2 Student Workbooks. Student Materials for
Level C consist of 1 Student Workbook and 1 Student
Textbook. Student materials must be ordered separately.

Connecting Math Concepts, Level A

Grade 1 {Available late summaer 1981) Net Price

7-15628 Level A Connecting Math Concepts  $150.00
Complete Set of Teacher Materials

7-15623 Level A Student Workbook 1 {pkg.5)  24.75

7-15625 Level A Student Workbook 2 (pkg. 5)  24.75

7-15626 Additional Level A Teacher Guide 12,00

Connecting Math Concepts, Level B

Grade 2 {Available late summer 1991)

7-15638 Leve] B Connecting Math Concepts 150.00
Complete Set of Teacher Materials

7-15633 Level B Student Workbook 1 {pkg. 5)  24.75

7-15635 Level B Student Workbook 2 (pkg. 5) 2475

7-15636 Additional Leve! B Teacher Guide 12.00

Connecting Math Cancepts, Lavel C

Grade 3 (Avallable late summer 1991)

7-15657 Level C Connecting Math Concepts 150.00
Complete Set of Teacher Materials

7-15653 Level C Student Workboaok {pkg. 5) 24.75

7-15654 Level C Student Text 15.00

7-15655 Additional Level C Teacher Guide 12.00

Macmillan/McGraw-Hill

155 North Wacker Drive
Chicago, IL 60606
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